—

,/ AD=ADT& 077 STANFORD UNIV CALIF DEPT OF COMPUTER SCIENCE F/¢ 9/2 \
A STRUCTURAL MODEL FOR DATABASE SYSTEMS.(U)
FEB 79 O VWIEDERHOLD: R EL~MASRI MDA903=T7=C=0322
UNCLASSIFIED STAN=CS=79=

e i
e — 56 3.2
v 4

"m T

o lleE

25 flie pee

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

A STRUCTURAL MODEL FOR DATABASE SYSTEMS
2 i

Gio Wiederhold and Ramez El-Masri

STAN-CS-79-722
February 1979

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

\E COP.

DOC &

S Y TR NN AT W0

T

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTION
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
T REPORT NUMBER 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
kl‘? STAN-CS-T79-722
L " TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
z; Structural Model for Database Systems,: technical, February 1979
\ 6. PERFORMING ORG. REPORT NUMBER

STAN-CS-T9-T22

}JUTNOR(:) 8. CONTRACT OR GRANT NUMBER(s)

) T e %
} *”Gio/Wieaerhold g Ramez / El-Masri I /MDR,993-77-C-0322
9. PERFORMING ORGANIZATION NAME AND ADDRESS ~) 10. PROGRAM ELE:J‘SINTT'NPUF:AOBJEEgST' TASK

Department of Computer Science
Stanford University
Stanford, California 94305 USA

AREA & WORK
-

Defense Advanced Research Projects Agency I Fehpaat i O
Information Processing Techniques Office A 13 NUMBER OF PAGES -
1400 Wilson Ave., Arlington, VA 22209 58

CONTROLLING OFFICE NAME AND ADDRESS N2 REPORT DAFE

7
{

14

_ MONITORING AGENCY NAME & ADDRESS(il dillerent from Controlling Oltice) 15. SECURITY CLASS. (of this report)
Mr. Philip Surra, Resident Representative

office of Naval Research, Durand 165 Unclassified
Stanford University 15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) /‘7 o

A

Reproduct ion ip whole or in part is permitted for any purpose of the
U.S. Government.

7.

DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

Reproduction in whole or in part is permitted for any purpose of the
U.S. Government.

SUPPLEMENTARY NOTES

' ?/) Tezhnival Hﬁ/DT\:.

19.

KEY WORDS (Continue on rcverse alde it necessary and identify by block number)

20.

ABSTRACT (Contlnue on reverse side I necessary and ldentify by block number)

(see reverse side)

A9 350 ¥ A

DD ,5ou'5: 1473 EOITION OF 1 NOV 65 15 OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(#hon Dota Fntered)

\S,
This report presents a model to be used for database design. Because our motivation extends
to providing guidance for the structured implementation of a database, we rall our model the
Structural Model. We derive the design using criteria of correctness, relevance, and performance
from semantic and operational specifications obtained from multiple sources. These sources typi-
cally correspond to prospective users or user groups of the database. The integration of such
specifications is a central issue in the development of an integrated structural database model.

The structural model is used for the design of the logical structures that represent a real-
world situation. However, it is not meant to represent all possible real-world semantics, but a

subset of the semantics which are important in database modellinz.%}

The model uses relations as building blocks, and hence can be cansidered as an extension
of Codd's relational model [Codd70). The main extensions to the relational model are the ex-
plicit representation of logical connections between relations, the inclusion of insertion-deletion
constraints in the model itself, and the separation of relations into several structural types.

Connections between relations are used to represent existence dependencies of tuples in
different relations. These existence dependencies are important for the definition of semantics of
relationships between classes of real-world entities. The connections between relations are used to
specify these existence dependencies, and to ensure that they remain valid when the database is
updated. Hence, connections implicitly define a basic, limited set of integrity constraints on the
database, those that identify and maintain existence dependencies among tuples from different
relations. Consequently, the rules for the maintenance of the structural integrity of the model
under insertion and deletion of tuples are easy to specify.

Structural relation types are used to specify how each relation may be connected to other
relations in the model. Relations are classified into five types: primary relations, referenced rela-
tions, nest relations, association relations, and lexicon relations. The motivation behind the choice
of these relation types is discussed, as is their use in data model design.

A methodology for combining multiple, overlapping data models — also called user views
in the literature — is associated with the structural model. The database model, or conceptual
schema, which represents the integrated database, may thus be derived from the individual data
models of the users. We believe that the structural model can be used to represent the data
relationships within the conceptual schema of the ANSI/SPARC DBMS model since it can support
database submodels, also called external schema, and maintain the integrity of the submodels with
respect to the integrity constraints expressable in the structural model.

We then briefly discuss the use of the structural model in database design and implementation.
The structural model provides a tool to deal effectively with the complexity of large, real-world
databases.

We begin this report with a very short review of existing database models. In Chapter 2, we
state the purpose of the model, and in Chapter 3 we describe the structural model, first informally
and then using a formal framework based on extensions of the relational model. Chapter 4 defines
the representations we use, and Chapter 5 covers the integration of data models that represent the
different user specifications into an integrated database model. Formal descriptions and examples
of the prevalent cases are given.

The work is then placed into context first relative to other work (Chapter 8) and then briefly
within our methodology for database design (Chapter 7).

UNCLASSIFIED

A STRUCTURAL MODEL FOR DATABASE SYSTEMS

Gio Wiederhold
Rames El-Masri

Computer Science Department
Stanford University

ABSTRACT

This report presents a model to be used for database design. Because our motivation extends
to providing guidance for the structured implementation of a database, we call our model the
Structural Model. We derive the design using criteria of correctness, relevance, and performance
from semantic and operational specifications obtained from multiple sources. These sources typi-
cally correspond to prospective users or user groups of the database. The integration of such
specifications is a central issue in the development of an integrated structural database model.

The structural model is used for the design of the logical structures that represent a real-
world situation. However, it is not meant to represent all possible real-world semantics, but a
subset of the semantics which are important in database modelling.

The model uses relations as building blocks, and hence can be considered as an extension
of Codd's relational model [Codd70]. The main extensions to the relational model are the ex-
plicit representation of logical connections between relations, the inclusion of insertion-deletion
constraints in the model itself, and the separation of relations into several structural types.

Connections between relations are used to represent existence dependencies of tuples in
different relations. These existence dependencies are important for the definition of semantics of
relationships between classes of real-world entities. The connections between relations are used to
specify these existence dependencies, and to ensure that they remain valid when the database is
updated. Hence, connections implicitly define a basic, limited set of integrity constraints on the
database, those that identify and maintain existence dependencies among tuples from different
relations. Consequently, the rules for the maintenance of the structural integrity of the model
under insertion and deletion of tuples are easy to specify.

Structural relation types are used to specify how each relation may be connected to other
relations in the model. Relations are classified into five types: primary relations, referenced rela-
tions, nest relations, association relations, and lexicon relations. The motivation behind the choice
of these relation types is discussed, as is their use in data model design.

A methodology for combining multiple, overlapping data models — also called user views
in the literature — is associated with the structural model. The database model, or conceptual
schema, which represents the integrated database, may thus be derived from the individual data
models of the users. We believe that the structural model can be used to represent the data
relationships within the conceptual schema of the ANSI/SPARC DBMS model since it can support
database submodels, also called external schema, and maintain the integrity of the submodels with
respect to the integrity constraints expressable in the structural model.

We then briefly discuss the use of the structural model in database design and implementation.
The structural model provides a tool to deal effectively with the complexity of large, real-world
databases.

We begin this report with a very short review of existing database models. In Chapter 2, we
state the purpose of the model, and in Chapter 3 we describe the structural model, first informally
and then using a formal framework based on extensions of the relational model. Chapter 4 defines
the representations we use, and Chapter 5 covers the integration of data models that represent the
different user specifications into an integrated database model. Formal descriptions ard examples
of the prevalent cases are given.

The work is then placed into context first relative to other work (Chapter 8) and then briefly
within our methodology for database design (Chapter 7).

A A P o N 0 e i R IR S N A e

CONTENTS

1. Current state of database models
1.1. Therelationalmodel « « + .
1.2. The hierarchical model
1.3. Thenetworkmodel
1.4. Some other models . . . PAge St F e TR i S SR A e
2. Purpose of the structural model A TR BN
3. Thestructural model
3.1. Real-world structures
3.2. Relations and connections
321. Relations . . « o « « « & & « .
3.2.2. Connections « « « .

o B @ o = =

3.3. Types of relations s e
3.3.1. Primary entity relations
3.3.2. Referenced entityrelations ¢ . o . . 10
3.3.3. Nestrelations ¢ v v v o 0 ol s e e e e e s e e 10
3.3.4, BexXicOmTRIALIONSE. & o v i o o Wl e e el e Al e e e . dL
3.3.5. Association relations . . . T e T e W T S LR U S a SRRy |

3.4. Formal definition of relation types o e e EEESR R R GRS |
3.4.1. Badicrelationtypss .« . . o v 5w @ o s 6 @ ow @ ow o w o oaos o8 s A

OOAPP UG A NN bt

e o e o o
e o & o o e e o
-
-
-
e e & e e
-
-

3.4.2. Subrelations . . AR R T |
3.5. Maintaining the structural mtegnty of the data mo del AT ST LT B AW R T |
3.5.1. Update constraints in the structuralmodel 18

3.5.2. Data model updatealgorithm o . . 18
3.5.2.1. Tupleinsertionalgorithm ¢ .+ . . . 18
3.52.2. Tupledeletionalgorithm . . « ¢ « & o o v o « & &« o« » = = » o+ 18
3.5.2.3. Attribute update algorithm o oo 00 0 0019

4. Representation of data models . . . LR T T TR TR MR
4.1. Representation of relationships in the ttructural model RN M N R,
4.2. Representation of a relationship between two entity classes 22

5. Integrationof datamodels o o 0 0 0 0 0 206
5.1. Concepts of integration . . . w T S
5.2. Integration of different representatlom of enhty clauel S RN R R |

5.2.1. Recognition of relations that represent the same entityclass 28

5.2.2. Integration of relations that contain different attributes 28

5.2.3. Integration of relations that represent different setsof tuples 29

5.3. Integration of different representations of arelationship 30

5.3.1. Integration with an association 30

5.3.2. Integration with a nest of references " . 35

{ 5.3.3. Integration with areference o W 41
5.3.4. Integrationwithanest T : 44

- 6. Relationship to othermodels iR F e & e 47
7. The database design process Qv v oW . 49

8. ContuNoOn® o &+ v + v v v wow wow Wk N W e —— 51

1. CURRENT STATE OF DATA MODELS

Database systems have become a major topic of interest because of their widespread use in
industry, commerce, government, and educational institutions [Steel74, Sibley76, Fry76]. Several
data models have been proposed to represent the structure of databases. The most widely discussed
models are the relational model [Codd70], the hierarchical model [Tsichritzis76], and the network
model (derived from the CODASYL database system specification [CODASYL74]). The majority
of implemented database systems use one of the above models. For an excellent introduction to
these three database models, see [CompSurv76).

1.1. The relational model:

The relational model is formed from relations. Each relation is composed of a set of struc-
turally identical tuples. Tuples are composed of related data elements. For each relation, a relation
description, or schema, defines the attributes and the possible values for the data elements that each
tuple in the relation may take. The sets of tuples in a relation is described using the mathematical
theory of relations, augmented with the concept of functional dependency among attributes. The
mathematical basis of the relational model, the uniform representation of all structures as relations,
and the syntactic clarity of the data model schema provide important advantages for model and
query analysis.

The relational model has been subjected to intensive theoretical scrutiny. Third normal
form [Codd72], and Boyce-Codd normal form [Codd74] have been defined to design relations with
favorable update properties. Bernstein [Bernstein75) describes an algorithm for synthesis of third
normal form relations from functional dependencies. Fagin [Fagin77] introduced multivalued de-
pendencies and a fourth normal form for relations to extend the understanding of the logical design
of relational databases.

When relations are built solely from the functional or multivalued dependencies among all
attributes in the data model, several possible logical data models can be derived [Bernstein?5,
Fagin77, Chang78, Delobel78]. Further, some of the data models will not have a direct correspon-
dence with the actual real-world situation being modelled [Schmid75]. Then the database designer,
or some automatic procedure, has to choose the most suitable model.

A drawback of the basic relational model is that known relationships among entities of the
situation being model are not explicitly represented but have to be recognized at query processing
time by matching attributes that have the same domain. This requires recognition of similar
domains, using the schema, as well as some computation within the database to match data ele-
ments. Also, logical integrity constraints are not defined within the model, but are left to be defined
by the database implementors. In one approach, integrity constraints are described by assertions
[Stonebraker74, Eswaran75).

1.2. The hierarchical model:

The hierarchical model represents classes of entities and hierarchical relationships among
different entity classes. A class of entitics is represented as a record type, and the hierarchical
relationships are represented by a tree structure, with record types as nodes in the tree. The record
type represents the attributes of a class of entities, while each record represents a particular entity
of the class, and is composed of data items that describe the entity.

Each record is owned by only one record of the record type at the level above it in the tree,
and can own in turn any number of records of the record types below it, if any. Many real world
situations are naturally hierarchical, and are thus well represented by a hierarchical model. In

1

ol T R AN o 1 7 B e

particular, individual user views, or data models, are often hierarchical. Databases used by multiple
users often need a more compiex model. In the hierarchical model, non-hierarchical relationships
are represented in an awkward and non-symmetric fashion by defining duplicate record types and
using pointers.

1.3. The network model:

The network model allows representation of non-hierarchical relationships among entity
classes. A record type may be owned by more than one record type, leading to a network rep-
resentation of relationships among entity classes. This permits a direct representation of m:n
relationships among entity classes. The concept of a link-set between two record typesisintroduced.

- A link-set groups together records of one record type, the member record type, that are owned by
a particular record of a different record type, the owner record type. Existence dependencies to
govern occurrences of owner and member records of a link-set are specified by different types of
link-sets, such as manual and automatic.

The database administrator may specify the access structure used for implementing a link-
set as a chain of pointers, a pointer array, or he may specify that the records be stored physically
adjacent. Thus access to the records in a particular link-set via the owner record can be very
efficient. However, the database designer has to recognize and define the link-set and its access
structure a priori, and queries based on structures not directly implemented may be quite costly
to process.

A drawback of the network model is that only implemented relationships can be exploited,
and that, due to implementation constraints, certain relationships are difficult to express (such as
recursive sets [Taylor76], which are relationships between records of the same record type). Another
criticism is that it is too implementation oriented, and thus provides limited data independence

[Engles69).

1.4. Some other data models:

The problems with the relational, hierarchical and network models have led to active research
in data models. Chang [Chang78] has developed an approach with a “database skeleton” which
includes semantic information about the relationships between database relations, and defines the
relationships over a time frame using the concept of the “state” of the database. The semantic
information is used by the system in query translation, and incomplete or “fuzzy” queries may
be processed. Manacher [Manacher?5) differentiates relationships into several semantic categories.
Abrial [Abrial74] goes further by distinguishing every relationship according to its particular
semantic notion, but states that his model would be too complicated for database construction.

Chen [Chen76] has proposed a model based on the relational model which clearly distinguishes
relations into two types: entities and relationships among the entities. Integrity rules for logical
consistency are considered for the relation types, but are not part of the model. Schmid and
Sweneon [Schmid75) develop the semantics of the relational model, and show that, in the context
of their model, relations in third normal form can be differentiated into five semantic types. Rules
for insertion and deletion of tuples are given.

More recently, models have been introduced that provide a more detailed semantic description
of the situation being modelled [Smith77, Hammer78, Navathe78). In these papers, constructs are
introduced to represent subsets of entity classes in the data model. These subsets have a semantic
significance in the data model, such as certain identifying properties that make them different
from other entities in the class.

The requirement to have a model which describes the data relationships independently of
implementation concerns was reccgnized when standardisation of the CODASYL model was sug-
gested. The ANSI/X3/SPARC committee [Steel75) has described a DBMS architecture in response
to the perceived long range needs. A principal component of the architecture is the concept sl
schema, which is to contain essential information about the database itself. The conceptual sche'ia
would be augmented by an internal schema to define the implementation, and by possibly several
external schemas to represent the transformations of the database to the views desired by the

users.

2. PURPOSE OF THE STRUCTURAL MODEL

The numerous data models presented in the literature have given insight into the process of
logical data model design, and the implemented relational, hierarchical and network database sys-
tems have provided experience on both logical and physical database design and implementation.
The model presented here is intended to assist in the development of a conceptual data model inde-
pendent of any implementation, but also to provide a framework for database implementation. We
propose that the model satisfies the criteria [Kent?7) for representing the relationships within the
conceptual schema of a database system that has an architecture similar to the ANSI/X3/SPARC
DBMS architecture.

The structural model which we present here:

(1) avoids the storage structure dependency and the limitations of the hierarchical and network
models,

(2) introduces semantic information to the relational model by the representation of logical
connections between relations which also define structural integrity constraints in the model
itself,

(3) allows a precise representation of the semantics of relationships between entity classes, and

(4) provides a framework for the design of a database system starting with the design of in-
dividual users data models, to the integration of the data models to form a global database
model, and finally the guidance of the choice of database implementation structures.

Associated with this structural model is 8 methodology to combine multiple, related data
models to form an integrated database model, and to design the data models to match closely the
real-world situation being represented. The individual data models aleo allow the user to specify
some of his requirements of the database system.

The model we present is built from relations, augmented with two additional basic concepts.
First we associate a relation type with each relation. Second we associate connection types with the
relation types which define the structural integrity of this relation with respect to other relations
that are logically related to it in the model. We define structural integrity to be the maintenance
of a consistent relationship among tuples in different relations of the data model as defined by the
connections among relations.

During the design and integration process, the relations will be manipulated. To assure
manipulatability, we require all relations to be in Boyce-Codd normal form. However, it is not
necessary to build the relations from the functional dependencies between attributes. Rather, as
also argued by Chen [Chen78), if we first define the logical entities and relationships from the real-
world, then simple transformations will create a model where all relations are in third normal form.
Once arelation is defined with all its attributes, one can check the functional dependencies between
the attributes of the relation. If a relation is not in third normal form, it may be transformed into
two or more relations in third normal form [Wiederhold77, sec.7.2). The structural model prescribes
how the data model relation and connection types will represent the entities and relationships of
a particular real-world situation, and hence limits the number of possible data models that may
represent a real-world situation.

We note here that the structural model is completely independent of implementation con-
siderations. While the structural model does represent connections between relations, it does not
mandate implementation of these connections. Rather, the connections are used for definition
of some logical integrity constraints. An implementation can be chosen based upon an existing
relational, hierarchical or network database management system, or possibly by using some other
approach.

’
3. THE STRUCTURAL MODEL
3.1. Real-World Structures:
= A database system is used to model some aspect of the real world. People approach real-world

data in several phases. First, they observe the situation and collect existing data that describe
the situation. Then, from their observations, they classify the data into abstractions. Next, they
assess the value of their abstractions in terms of how much it helps them manage the world with a
minimum of exceptions. Finally, if they have to implement a system, they describe the real-world
situation by a data model. Such a model may be stored on some physical medium (computer or
paper files), and used as a guide for data processing. We hence introduce a model which can be
used to represent the majority of real-world situations rather than a model which may be used to
represent all possible real-world semantics.

The main building blocks of the data model are dasses of entities, such as PEOPLE, CARS,
HOUSES,... etc. An entity class is described by the primitive components that are used to describe
cach of its members, the properties. For example, the entity class CARS can have the properties
LICENSE-NUMBER, COLOR, MODEL, YEAR. The properties that identify a specific entity
within the entity class, in this case the single property LICENSE-NUMBER, are called the ruling
properties. The properties that describe characteristics of an entity, in this case COLOR, MODEL,
and YEAR, are called the dependent properties.

Associated with each property is a domain, the set of values the it can take in any of the
entities that have this property. Some properties may be repeating. For example, consider the class
of entities EMPLOYEES. One of the properties we may represent is the SALARY-HISTORY of
an employee. Each employee will have several entries of the salary history, one for each salary he
had during his previous employment period. The number of entries is variable from one employee
to the next. The SALARY-HISTORY is also an example of a compound property, one which is
formed of several, more basic, other properties. In this case, SALARY-HISTORY is formed from
two more basic attributes, YEAR and SALARY-VALUE. However, such compound properties can
always be decomposed into several of the basic properties.

We also have to model the relationships that exist between entity classes. A relationship is a
mapping among classes. Thus, a relationship defines a rule associating an entity of one class with
entities of other (not necessarily different) classes. Most relationships we encounter are between two
entity classes. An example of such a relationship is CAR:OWNER between the entity classes CARS
and PEOPLE. Such relationships may be 1:1 (for example COUNTRY:PRESIDENT), 1:N (for ex-
ample MANAGER:EMPLOYEE), or M:N (for example STUDENT: CLASS). Other relationships
may be among more than two classes. For example, the relationship SUPPLIER:PART:PROJECT
is among three entity classes SUPPLIERS, PARTS, and PROJECTS.

A relationship between two entity classes has two important characteristics: the cardinality
and the dependency . The cardinalily of a relationship places constraints on the number of entities
of one class that can be related to a single entity of the other class. The dependency characteristic
of a relationship places constraints on whether an entity of one class can exist that is not related
to any entities of the other class. We will discuss these characteristics more fully in section 4.1.

Finally, some classes of entities may be sub-classes of other entity classes. For example, the
entity class EMPLOYEES is a sub-class of the entity class PEOPLE.

The data model should reflect the real-world structure as closely as possible. This makes it
easier for the users to understand the model, and allows useful semantic information from the real

world to be included in the data model.

S ’ o 2 Il o 5 i

& By g T3
S \@(‘ » ~ S

'-“-—'v.-v.t.

ﬁ ’ wl W‘m,‘wm'v B A

In the structural model, relations are used to represent entity classes, and some types of
relationships betwesn entity classes. Other relationships between entity classes are represented by
connections between relations. Relations will be categorized into several types, according to the
structure they represent in a data model. Connections between relations will also be classified into
types, and possible connections between relation types are a part of the model.

Simple properties are represented by attributes of relations. We will always decompose
compound properties inte the simple properties from which they are formed.

3.2. Relations and Connections:

Relational concepts are well known, but for conciseness we now define relations and relation
schemas as we use them in the structural model. Then we formally define the concept of connections
between relations.

In order to define a relation, we first define attributes, tuples of attributes, and relation
schemas. Relation schemas specify the attributes of a relation. Attributes define the domains from
which data elements that form the tuples of the relation can take values.

We will use B, C, D, to denote singlc attributes; X, Y, Z, to denote sets of attributes; b, c,
d, to denote values of single attributes; and, x, ¥, 5, to denote tuples of sets of attributes. For
simplicity, we assume that all sets of attributes are ordered.

3.2.1. Relations:

Definition 1: An attribute B is a name associated with a set of values, DOM(B). Hence, a
value b of attribute B is an element of DOM(B).

For an (ordered) set of attributes Y = (By,...,Bm), we will write DOM(Y) to denote
DOM(B;) X ... X DOM(Bm), where X is the cross product operation. Hence, DOM(Y) is the set
{(bs,..., bm) | b € DOM(B;) for i = 1,...,m}.

Definition 2: A tuple y of a set of attributes Y = (B;,..., Bm), is an element of DOM(Y).

Definition 3: A relation echema,R,, of order m, m > 0, is a set of attributes Y == (B, ..., Bm).
The relation, R, is an instance (or current value) of the relation schema R,, and is a subset

of DOM(Y).

Each attribute in the set Y is required to have a unique name.

The set Y is partitioned into two subsets, K and G. The ruling part, K, of relation
schema Rs is a set of attributes K = (By, ..., Bx), k < m, such that every tuple yin R
has a unique value for the tuple corresponding to the attribute set K. For simplicity, we
assume the set K is the first k attributes of Y. The dependent part, G, of relation schema
Ry (== Y) is the set of attributes G == Y — K, where — is the set difference operator.

All relations are in Boyce-Codd normal form. (For definitions of functional depend-
ency and Boyce-Codd normal form, see section 8.1.)

We will write R[Y) or R[By,...,Bm) to denote that relation R is defined by the relation
schema Y == (B,,..., Bm)

Also, K(Y) will denote the ruling part of relation schema Y, and G(Y) will denote the de-
pendent part. Similarly, for a tuple y in relation R, defined by the relation schema Y, k(y) will
denote the tuple of values that correspond to the attributes K(Y) in y, and g(y) will denote the
tuple of values that correspond to G(Y) in y.

P er——— :
y gy ; . e e e Pl el Afama

ST T R N M

A relation R[Y] may have several attribute subsets Z which satisfy the uniqueness requirement
for ruling part. In the structural model, the ruling part of a relation schema is defined according
to the type of the relation (see sec. 3.4).

3.2.2. Connections:

We now define the concept of a connection between two relations, then define the types of
connections that are used in the structural model. A connection is defined between two relation
schemas. An instance of the connection exists between two tuples, one from each relation.

Definition 4: A connection between relation schemas X; and X3 is established by two sets of

connecting attributes Y; and Y; such that:

a. Y[Q Xl.

b. Y; © X,.

c. DOM(Y;) = DOM(Yy).

We then say that X is connected to X3 through (Y3, Y3).

Two tuples, one from each relation, are connected when the values for the connecting
attributes are the same in both tuples.

The definition of connection is symmetric with respect to X; and X3, and thus it is an
unordered pair.

Connectionis may be more complex. For example, if we desire a connection between two
sets of attributes with dissimilar, but related, domains, condition (c) above may by changed to
DOM(Y;) = f(DOM(Y3)). The function f will relate values of data elements from the two domains.
The equality condition in (c) above is the simplest case.

The structural model uses three basic types of connections, which we now define. Associated
with each of the connection types are a set of integrity constraints that define the existence de-
pendency of tuples in the two connected relations. These constraints define the conditions for
the maintanence of the structural integrity of the model. We will define structural integrity, and
discuss these constraints in section 3.5.

Definition 5: A reference connection from relation schema X to relation schema X3 through
(Y3, Y3) is a connection between X; and X3 through (Y3, Y3) such that:
a. Yz - K(XQ)
b. Y; © K(X)), or Y; © G(X;), but Y; may not contain attributes from both K(X;)
and G(X;).

Definition Sa: A reference is an identity reference if Y = K (X)).
Definition 5b: A reference is a direct reference if it is not an identity reference.

Reference and direct reference are not defined symmetrically with respect to X; and X3, and
thus are ordereded pairs (X, X2) when the reference is from X; to X3. The identity reference is
defined symmetrically, but we still consider it to be ordered. This is because identity references are
used to represent a subrelation of a relation, defined in section 3.4.2, and we consider the reference
to be directed from the subrelation to the relation.

Definition 8: Anownership connection from relation schema X; to relation schema X3 through
(Y3,Y3) is a connection between X; and Xz through (Y3,Y3) such that:

a. Y; o K(Xx).

k" v L e B e] W

Y
Y1
X3 j

‘L__K__'l
(a) Direct reference (Xj, X3) from the ruling part of X;
P

Xi ¥ |
Y;
e S

X3 j

(b) Direct reference (Xj, X3) from the dependent part of X;

—k— —k—

Xi | X |
Yx Yl
| s P Pl
X3] X ' J
o K
(c) Identity reference (X, X3) (d) Ownership connection (X;, X3)

Figure 1. Types of connections

b. Y; C K(X).

The ownership connection is also non-symmetric with respect to X; and X3, and is an ordered
pair (X;, X3) when the ownership connection is from X to Xs.

The connections defined above may be represented graphically as in figure 1. They are rep-
resented by directed arcs, with the g representing the to end of the connection. The ruling part
attributes in each relation are marked K, and separated from the dependent part attributes by
double lines ().

s ian e Uamm

»

3.3. Types of relationas:

Relations in the structural mode! are classified into structural types, which define their in-
teraction with other relations in the data model. Relations can also be classified semantically
according to the concept they represent from the real-world situation. One should be careful to
distinguish between the semantic and the structural role of a relation in a data model.

Semantically, we distiguish between classes of entities, properties of classes of entities, and
relationships among classes of entities. Classes of entities can be represented by several structural
relation types, depending upon their relationship with other classes of entities. Hence, entity classes
may be represented by either primary entity relations, referenced entity relations, or nest relations,
as we shall see.

Non-repeating properties of a class of entities are represented as attributes of the relation
that represents the entity class. Repeating properties of a class of entities are represented by a
nest relation owned by the relation that represents the entity class (see section 3.3.3).

Relationships among entity classes can also be represented using different structures, depend-
ing upon the characteristics of the relationship. A relationship between two entity classes may be
represented by an ownership connection, a reference connection, or two connections and an auxiliary
relation. This auxiliary relation may be a primary relation, a nest relation, or an association
relation (see section 4.1).

Structurally, relations are categorized into five types: primary relations, referenced relations,
nest relations, association relations, and lexicon relations. These are all relations which have the
same form, but are classified according to their connections to other relations.

In this section, we informally present the rationale behind the choice of the different structural
relation types. We give formal definitions for the relation types in section 3.4.

A relation in the data model which represents a class of entities in the real-world situation
is termed an entity relation. The choice of entity classes is a fundamental aspect of the data model
design process. The goal is to match entity relations as closely as possible to real-world entity
classes.

Structurally, entity relations may be primary, referenced or nest relations. The choice of
structural type to represent an entity relation depends upon its role in the data model. In the
following three sections, we discuss the criteria for this choice.

3.3.1. Primary entity relations:

An important objective of the data model is to represent real-world entities. The existence of
a tuple in the data model which represents such an entity is hence determined by the existence of
the actual entity, independently from other modelling considerations. Classes of such entities are
represented in the data model by primary entity relations. Examples of primary entity relations
are EMPLOYEES and CARS. Primary entity relations should be chosen to be update-independent
of other relations in the data model. An update of another relation should not require an update
of a primary entity relation. An update of an entity relation, however, may require updates to
other relations connected to it, as we shall sce later.

An example of a primary entity relation is the relatica EMPLOYEES in a model that rep-
resents a company. Updates to the EMPLOYEES relation occur only from outside the database.
An employee tuple is inserted whenever a new employee is hired by the company, and deleted
whenever an employee leaves. This potentially affects several other relations in the database such
as CHILDREN and EMPLOYEES-DEPARTMENT. Thus, insertion of an employee tuple involves
the possible addition of tuples to other relations in the database that are connected to the employee
relation, such astuples that represent the employee's children in the CHILDREN relation, and tuples
associating the employee with the departments he works for in the EMPLOYEES-DEPARTMENT

9

R IR e R Ve i v

ARl T S

relation. Note that the number of additional tuples added to the database because of the insertion
of a new primary entity tuple is variable, and determined externally; the model only presents the
user with guidelines to follow when inserting a primary entity tuple.

The deletion of a tuple from a primary entity relation may imply the deletion of related
tuples from other relations in the database . Thus, the deletion of an employee tuple will involve
the delction of tuples for his children from the CHILDREN relation, as well as tuples associating
him with the department he worked in from the EMPLOYEES-DEPARTMENT relation. Such
a deletion does not involve any additional checking before the tuple is deleted, since a primary
entity relation may not be referenced by any other relation in the data model.

3.3.2. Referenced entity relations:

When representing a real-world situation, one often encounters abstractions that are used
mainly to describe properties of other entities. Such entities are referenced by other entities in
the model. This type of entity is a rcferenced entity, and classes of such entities are represented
in the data model by referenced entity relations. Examples of referenced entity relations are
CAR MODEL SPECIFICATIONS, referenced by the attribute MODEL in the relation CARS,
and JOB DESCRIPTION, referenced by the JOB attribute of the relation EMPLOYEES. The
use of these referenced entities greatly reduces redundancy in the data model. As we ghall see, the
main difference between a primary entity relation and a referenced entity relation in the structural
model is in their update characteristics.

A direct reference connection will exist from some relations in the data model, termed the
referencing relations, to the referenced entity relation. The reference connection restricts the dele-
tion of tuples in the referenced entity relation, as well as the insertion of tuples in the referencing
relations. We discuss these restrictions here in terms of an example, and will define them precisely
in section 3.4.

An example of a referenced entity relation is presented with respect to a company database.
Suppose the company wishes to keep track of current and possible suppliers for inventory items.
The SUPPLIERS relation is a referenced entity relation. The existence of supplier tuples is deter-
mined by a sclection from the real-world, since the company maintains a list of its current and
possible suppliers. However, a supplier tuple may not be deleted while it is being referenced from
the INVENTORY relation within the data model. Thus, the deletion of tuples from a referenced
entity relation requires checking the tuples in all relations in the data model which reference this
referenced entity relation. Addition of tuples to the referencing relation, the INVENTORY relation
in this case, is restricted to those tuples that reference an already existing supplier, represented
by a tuple in the SUPPLIERS relation in the database. Thus, the name of a supplier for a new
inventory item should exist in the SUPPLIERS relation before the new referencing tuple is added
to the INVENTORY relation.

Tuples of referenced entity relations may be referenced from more than one relation. For
example, the SUPPLIERS relation, may be referenced from the ACCOUNTS-PAYABLE relation,
describing unpaid bills, as well as from the INVENTORY relation. Note that supplier tuples may
exist which are not currently referenced from other tuples in the database, but one cannot delete a
supplier tuple without checking tuples in all relations that may reference the SUPPLIERS relation.

All other update characteristics for referenced entity relations are the same as the update
characteristics for primary entity relations. In the rest of this paper, when we use the term entity
relation without qualification, we will mean primary or referenced entity relation.

3.3.3. Nest relations:

Hierarchical dependencies occur frequently in real-world situations. Hence, real-world entities
will be represented in the data model whose existence directly depends upon the existence of

10

-'1*‘7'

another entity. For example, in a company database, the CHILDREN relation represents children
of employees currently working in the company. The existence of children tuples in the company
database is justified while their parent works for the company, and the tuple representing the
parent exists in the EMPLOYEES relation. Such entities will be represented in the data model by
nest rations.

A nest relation always corresponds to a 1:N relationship between two data model relations,
the owner relation and the nest relation. In our example, the EMPLOYEES relsation is said to own
the CHILDREN relation. This 1:N relationship is represented in the data model by an ownership
connection from the owner relation to the nest relation.

For each tuple in the owner relation, a set of zero or more tuples will exist in the nest relation
that are connected to this tuple. The existence of this set of tuples depends upon the existence of
the owner tuple in the owner relation. The term 'nest relation' has been chosen because each owner
tuple will own a 'nest’ of tuples in the nest relation. The existence of individual tuples of the nest
is determined by the real-world requirements.

Hierarchical dependencies also occur when a class of entities has a repeating property, where
the number of repetitions is variable for each entity in the class. We then represent the repeating
properties by attributes in a nest relation that is owned by the relation representing the entity
class. An example is the education history attributes of an employee in the company database.
Here, the EMPLOYEES relation owns the nest relation EDUCATION HISTORY. In the structural
model, the normalization to first normal form forces the use of distinct nest relations, but the
connection to the owner relation remains recognized.

Insertion of a tuple in a nest relation is contingent upon the existence of the owner tuple
in the owner relation. Thus, one may not insert a child or an education history tuple without a
corresponding owner employee tuple in the EMPLOYEES relation. The deletion of a tuple from
a nest relation is not restricted by the ownership connection. The deletion of a tuple from the
owner relation requires deletion of the nest of tuples owned by it in the nest relation. Insertion of
tuples in the owner relation may involve the creation and insertion of a nest of tuples in the nest
relation.

3.3.4. Lexicon Relations:

A lexiocon relation is used to represent a one-to-one correspondence between two sets of at-
tributes. Most frequently, the one-to-one correspondence will be between only two single attributes,
but sets of attributes may also be involved. Examples are the one-to-one correspondence between
the two attributes DEPARTMENT-NAME and DEPARTMENT-NUMBER in a company data
model, or that between the two sects of attributes {INSTRUCTOR, CLASS, SECTION} and
{ROOM, HOUR, DAYS} in a university data model. This one-to-one correspondence reflects a
similar correspondence between properties.

Such one-to-one correspondences between two sets of attributes occur frequently, and isolat-
ing lexicons simplifies the data model considerably by transferring attributes that serve the same
function into a lexicon relation. One sct of attributes can represent all instances of either set
outside of the lexicon itself. Which sct of attributes remains in the core of the data model is left
to the judgment of the model designer.

The lexicon relation will have a reference connection to it from every relation in the data
model that includes either one or both of the sets of attributes in the lexicon. The reference
connection may be a direct reference or an identity reference, depending on the situation.

Lexicons serve another important function in the data model. Frequently, relations will have
more than one set of ruling (or key) attributes. A set of ruling attributes is guaranteed to have
a unique value for any tuple in the relation, and thus any such set of ruling attributes may be
used for tuple identification. In our model, each relation has one primary set of ruling attributes,

11

s s I

the ruling part of the relation. Other equivalent sets of ruling attributes are transferred to lexicon
relations.

The use of lexicons can greatly reduce the number of possible alternatives for the data model,
leading to a significant simplification of the model design process. The two sets of attributes in a
lexicon relation can be treated conceptually as a single attribute in intermediate processes which
lead to the design of the data model, and can thus be considered as equivalent in the data model.
Hence, lexicon relations can be seen as a means of reducing the number of attributes in the core
of the data model, leading to the creation of a clearer, simpler model.

3.3.5. Association relations:

We finally consider relations used to represent the interaction between two or more relations
in the data model. Such relations will be termed association relations. An association relation between
two relations associates with each tuple of one relation a number of tuples from the other relation
(possibly none). It does not represent any existence dependency between the tuples in the different
relations, but only an association between existing tuples.

An association relation of order ¢ relates tuples from ¢ owner relations. Each of the owner

relations has an ownership connection to the association relation.

An example of an association of order 2 is the relation EMPLOYEE-PROJECT which relates
an employee to the projects he works in, and vice-versa. Each project tuple and each employee
tuple have an existence of their own, independently from the tuples in the association relation. A
tuple in the association only relates an employee with a project.

An example of an association of order 3 is the SUPPLIER-PART-PROJECT relation, which
relates tuples from three owner relations.

An association relation is used to represent information relevant to a relationship between
entity classes. Usually, the entity classes are represented by the ¢ independent relations. Thus, in
our example, the EMPLOYEE-PROJECT association may include information about the job the
employee does for the project, the percentage of time he works on the project, ... etc. It is also
possible for association relations to have no dependent information. In this case the association
relation is used only for relating tuples from the owner relations together.

The update rules for an association relation and its owner relations are now self-evident: no
tuple in the association relation may be created if there are no corresponding owner tuples in the
owner relations, and deletion of a tuple from any owner relation causes the deletion of all tuples
affiliated with it from the association. Note that the deletion rule does not affect the existence of
the tuples related to the deleted tuple in the other owner relations: it only affects those tuples in
the association relation that serve to relate these tuples together. Thus, deletion of an employee
would not affect the existence of any of the projects he works for.

3.4. Formal definition of uiotion types:

In this section, we formally define the different types of relations discussed in section 3.3 in
terms of their connections with other relation types in the data model. We then define subrelations
of existing relations, and how a subrelation is connected to its base relation in section 3.4.2.

For the remainder of the paper, we will use the term relation for both the relation schema
and the relation, since the meaning is clear from the context.

3.4.1. Basic relation types:

Semantically, relations are classified into entity and non-entity relations.

12

—k—

R,

Y,

Yy
Rg| l |
f K

Figure 2. A nest relation, Ry

Definition 7: An entity rdation is a relation R[X] which defines a correspondence between
members of a class of real-world entities and the tuples in R[X].

The ruling part of an ntity relation defines the correspondence to the class of real-world
entities, while the dependent part includes the attributes that describe basic properties of the
entities.

Structurally, we define five basic types of relations:

Definition 8: A primary relation is a relation that has no direct references or ownership con-
nections to it from any other relation in the data model.

Primary relations are required to have no references or ownership connections to them. Thus,
deletion of tuples from primary relations is unconstrained by the data model.

Definition 9: A referenced relation is a relation which has direct references to it from some
relations in the data model.

The ruling part attributes K(R) of a referenced relation, R, are used for referencing R from
other relations. Hence, each relation R’ that references R will have a set of referencing attributes
that define the reference connection to R. This constrains insertion and deletion of tuples in both
RandR'.

Insertion of a tuple in R should precede any reference to it from a tuple in a referencing
relation. Deletion of a tuple from R involves checking that it is not referenced by any tuples from
any of the relations that reference R. Insertion of a tuple in R’ requires the existence of all tuples
that it references.

Definition 10: A nest relation is a relation, Ry, which has an ownership connection to it from
exactly one other relation, Ry, in the data model. R; is the owner of Rg.

A nest relation R has an ownership connection to it from the owner relation, R;. Hence, the
ruling part K(Rg3) will consist of two parts: a set of attributes to define the connection with R;,
and additional attribute(s) which must uniquely identify tuples owned by the same owner tuple
in Rl'

Insertion of tuples in Ry requires the existence of the owner tuple in R;. Deletion of tuples
from the nest relation may occur based on conditions determined externally from the database,
but may also be the result of deleting an owner tuple from R;, which requires deletion of all tuples
owned by it in Rj.

13

K- k-
Ry R; l]
—X. 1 — '_XQ—'

Y, —+Y,—
R| | |

K
Figure 3. An association relation, R, of order 2

—k— ——
m [n] &

zi— a._zz_
ey, . Yy {
R —x— :
X 1

Figure 4. A lexicon relation, R[X]

Definition 11: An association relation R of order s, ¢ > 1, is a relation R that has s ownership
connections to it from s other relations in the data model, R;,...R; such that:
a. each R; has an ownership connection to R through Xy, Y; for j==1,.. 5.

b. Y; () Yi = 0 for j 5 k.
¢ KR)=Y,{J...UY:

An association relation of order ¢ has s ownership connections to it, one from each of the
i owner relations. Hence, the domain of the ruling part attributes of an association relation is a
catenation of s sets of attributes, each set defining the connection to one of the owner relations.
A tuple in the association is owned by one tuple from each of the owner relations. For each tuple
in an owner relation, there may exist zero, one or many owned tuples in the association.

Deleting a tuple from an owner relation will thus require the deletion of all tuples owned by
it in the association. Insertion of a tuple in the association will require the existence of the s owner
tuples.

Definition 12: A lexicon relation R[X] between two sets of attributes Y; and Y3 defines a 1:1
correspondence between DOM(Y;) and DOM(Y;) such that:
a. Y; = K(X).
b. the set of attributes Y3 does not appear in any relation other than R.
c. YlnYz-', and Y]UYQ—X.
d. R is referenced by one or more relations in the data model by identity or direct
references.

14

A lexicon will have reference connections to it from all the relations in the data model that
contain the set of attributesin the lexicon. The ruling part of a lexicon is the attribute set that exists
in the other relations in the model, and the dependent part is the other attribute set in the lexicon.
For example, if it is necessary to identify the dapartment in several relations of the data model,
then either DEPARTMENT-NUMBER or DEPARTMENT-NAME would be chosen. To simplify
the model, an arbitrary single choice is made, say to use the astribute DEPARTMENT-NUMBER
in all relations of the model. Then, DEPARTMENT-NUMBER will be the ruling part of the
lexicon, and DEPARTMENT-NAME will be the dependent part. Every relation containing the
attribute DEPARTMENT-NUMBER will reference the lexicon.

The above definitions define the five structural types of relations: primary, referenced, nest,
association, and lexicon. Connections can exist at any level in the model: nest relations can be
owned by other nest relations, by associations, or by referenced entity relations as well as by
primary entity relations. Similar choices exist for referenced relations, associations, and lexicons.
A subrelation may be defined on any relation. In the following section, we define subrelations.

3.4.2. Subrelations:

A subrelation S of some relation R defines a subset of the tuples in R as belonging to the
subrelation. This subset of tuples either has a semantic significance in the data model, or has
certain additional properties that have to be represented, but that are not represented in the other
tuples in R. The relation R is called the base relation of the subrelation S.

We will not allow duplication of information in the representation of a subrelation, other
than the information needed for tuple identification. Hence, a subrelation will have the same ruling
part attributes as the base relation, and will be connected to the base relation through an identity
reference connection. The identity reference reflects the fact that a tuple in the subrelation that
has the same value for the ruling part as a tuple in the base relation represents the same entity
in the data model.

All attributes other than the ruling part attributes of the subrelation have to be different
from the attributes of the base relation.

Definition 13: A (non-restriction) subrelation of relation R[X] is a relation S[Z] such that:
a. an identity reference exists from S to R.
b. for every tuple z in S, there exists a corresponding tuple x in R such that k(x) =
k(z).
¢ Z— K(Z))X~ K(X) =9.
The relation R is called the base relation for subrelation S.

Definition 13a:A restriction subrelation of a relation R[X], restricting the set of attributes Y,
Y C X, to the subdomain D, D & DOM(Y), is a subrelation S[Z] of R such that: for
every tuple x in R that has as value for the set of attributes Y a tuple y in D, there
exists a corresponding tuple zin S such that k{z) == k{x).

An example of a restriction subrelation is a relation TECHNICAL EMPLOYEES, a subrela-
tion of the EMPLOYEES relation, restricting the attribute JOB of EMPLOYEES to the subdomain
{engineer, researcher, technician}, say.

Existence of tuplesin a restriction subrelation is totally dependent on the existing tuples in its
base relation. In our example, all employee tuples with job value engineer, researcher or technician
must also exist in the TECHNICAL EMPLOYEES subrelation, while all other employee tuples
cannot exist in this subrelation.

An exampleof a non-restriction subrelation is a relation EMPLOYEES IN SPECIAL PROJECT
X. Existence of tuples in this subrelation is determined externally of the data model, but confined
to tuples in the base relation of all employees.

15

| TP SR—

We will use subrelations to represent three cases:

(1) When a subset of a relation has a semantic significance within the data model, or has
additional attributes that need to be represented in the model.

(2) When integrity constraints require a subset of a relation to own a nest relation or an
association, or to be referenced from another relation.

(3) When we combine data models to form an integrated database model (see section 5), some
data models may represent subsets of relations represented in other data models. This has
to be reflected in the integrated database model.

The update rules for the base relation and the subrelation are: when a tuple that belongs
to the subset represented by the subrelation is inserted in (deleted from) the base relation, the
corresponding tuple (having the same ruling part value) is inserted in (deleted from) the subrela-
tion. Also, if an update to a tuple in the base relation results in the removal of the tuple from
the subset, the corresponding tuple should be deleted from the subrelation. For example, if the
job of an employee tuple is changed from engineer to manager the corresponding tuple in the
TECHNICAL EMPLOYEES subrelation should be deleted.

3.5. Maintaining the structural integrity of the data model:

Structural integrity exists in our model when the tuples in the data model do not violate the
constraints specified by the connections between relations. One can consider that the structural
model contains a basic set of integrity assertions as part of the model. The integrity assertions
are those expressed implicitly by the connections between relations, and are used to specify the
existence dependencies, and hence the update constraints, of tuples in connected relations.

We do not specify in the model when or how the integrity constraints are to be maintained in
an implementation of the data model. The purpose of the model is that integrity constraints can
be recognized, and that implementors can refer for guidance to the model. In practical implemen-
tations, there may be intervals where the structural integrity rules do not hold. It should be known
however which structural integrity constraints have been violated and are awaiting correction.
Hierarchical and network databases tend to require that all integrity constraints be satisfied for
those connections that are actually implemented. Techniques dealing with temporary integrity
violations using artificial reference tuples are indicated in [Wiederhold77].

Our model may appear less powerful than the original relational model since update integrity
violations can occur. In the pure relational model, inter-relation connections are not described, but
are left to be discovered at query-processing time. The lack of recognition of logical connections
between relations in a database model will simplify certain technical problems during update,
but does not eliminate semantic inconsistencies relative to knowledge models of the database ad-
ministrator or the user. Furthermore in many situations it is best to discover and correct integrity
violations at the time of update rather than to try and cope with an inconsistent database at query
processing time. '

In section 3.5.1, we list the integrity constraints specified by each connection type, then give a
summary of rules for maintenance of the structural integrity for each of the relation types. We then
show in section 3.5.2 how these rules may be expressed as simple algorithms for maintaining the
structural integrity of the database upon insertion and deletion of tuples, and update of attribute
values.

3.5.1. Update constraints in the structural model:

The integrity constraints specified by the connection types are the following:
A direct reference connection from relation R to relation Rj specifies the constraints:
(1) Every tuple in R; must reference an existing tuple in Rg.

16

Ak

(3) Deletion is restricted for tuples in Rz. Only tuples that are not referenced from any relation
in the data model may be deleted.

An ownerahip connection from relation R to relation Ry specifies the constraints:
(1) Every tuple in Rz must be owned by an existing tuple in R;.
(2) Deletion of a tuple from R; requires deletion of all owned tuples in Rj.

An idendily reference connection from a subrelation R to its base relation R specifies the con-
straints:
(1) Every tuple in R; must reference an existing tuple in R.
(2) Deletion of a tuple from R requires deletion of the referencing tuple in R;.

(3) If R, is a restriction subrelation, then every tuple in R that belongs to the subrelation
(specified by the value of the restricting attributes in R) must exist in R;.

We now give an informal listing of the update constraints associated with each relation type:
1. Primary relation:
(a) The tuples are neither owned nor referenced by other tuples in the data model.
(b) Deletion of a tuple requires the deletion of tuples owned by it in nest and association
relations.
(c) Insertion of a tuple requires the existence of referenced tuples in the relations referenced
by attribute values in the new tuple.

2. Referenced relation:
(a) The tuples are referenced from other tuples in the data model.
(b) The ruling part defines the attributes through which the tuples are referenced by other
tuples in the data mode).
(c) D(el)etion of a tuple is constrained by the existence of references to that tuple. Also, as in
1(b
(d) As in 1(c)

3. Nest relation:

(a) The tuples may be referenced from other tuples in the data model.

(b) The ruling part defines a specific owner tuple, and a specific tuple within the nest of tuples
that has the same owner tuple.

(c) As in 1(b). If the relation is referenced, deletion is constrained by existence of references
to the tuple.

(d) Insertion of a tuple requires the existence of the owner tuple in the owner relation, and the
existence of referenced tuples in relations referenced by it.

4. Lexicon relation:
(a) As in 2.a.
{ (b) The ruling part is a set of attributes, through which the tuple is referenced.
(c) Deletion of tuples is constrained by the existence of references to that tuple.
(d) Insertion of a tuple requires no checking.

5. Association relation of order s :

(a) As in 3.a.
(b) The ruling part defines § specific owner tuples, one from each of the § owner relations.

17

(c) Asin 3.c.

(d) Insertion of a tuple requires the existence of the s owner tuples in the s owner relation, and
the existence of referenced tuples in relations referenced by it.

6. Subrelation:
(a) As in 3.a.

(b) The ruling part attributes are used for referencing the base relation through an identity
reference.

(c) As in 3.c.

(d) Insertion and deletion of tuples in a restriction subrelation are totally controlled by existing
tuples in the base relation.

As indicated earlier, a relation may have more than one connection with other relations in
the data model. A nest relation may for instance itself be referenced, and may also reference tuples
of another referenced entity relation. In these cases, all connections impose constraints on the data
model.

3.5.2. Data model update algorithms:

We now give three simple algorithms for maintaining the structural integrity of the data
model by observing the constraints given in the preceding section. The algorithms will be described
in terms of the connection types defined in section 3.2.2.

3.5.2.1. Tuple insertion algorithm:

Upon receipt of a request to insert a new tuple x in relation R:
a. Check the consistency of the new tuple with the current tuples in the database:

a.l. For every relation R; referenced by R through a reference connection, verify that
the tuple y referenced by x exists in R;.

a.2. For every relation R; that has an ownership connection to R, verify that the owner
tuple y of x exists in R;.

b. If the new tuple is consistent with the data model, insert it and for every relation R owned
by R through an ownership connection, send a message to the user reminding him to insert
the tuples owned by x in Rj.

Thus insertion involves two actions: checking that tuples connected with the new tuple exist
in the data model, and insertion of other tuples connected with the new tuple. The checking can
be done automatically, but insertion of other new tuples will in most cases be done by the user.
For example, the insertion of an employee tuple involves insertion of his children in a nest relation
CHILDREN owned by the EMPLOYEES relation, and of the tuples associating the employee with
the department he works for in the EMPLOYEE-DEPARTMENT association relation, also owned
by EMPLOYEES. However, any new tuplesin both CHILDREN and EMPLOYEE-DEPARTMENT
are inserted by the user. The system only reminds the user that such data may exist, and if they
do exist they should be added to the data model.

In some cases, as when a nest relation represents repeating properties of an entity class, an
application program can be written to insert all properties of the entity simultaneously. Both a
tuple in the entity relation, and its nest of tuples that represent the repeating property are inserted.

3.5.2.2. Tuple deletion algorithm:

Upon receipt of a request to delete tuple x in relation R:

18

B L e

a. Check for direct references to x from other tuples in the data model: If relation R is a
referenced relation or a lexicon, check that x is not referenced by any tuple from a relation
with a direct reference to R. If x is referenced, send an error message, and do not complete
the deletion.

b. Check if tuples owned by x may be deleted: For every relation R; owned by R, initiate
deletion of the tuples in R) owned by x. For every subrelation R of R, initiate deletion
of the tuple y in the subrelation that corresponds to x.

c. If all the owned and subrelation tuples can be deleted, complete deletion of x. Otherwise,
do not complete deletion of x, and send a warning message that x could not be deleted.

Deletion also consists of two parts: checking that the tuple being deleted is not referenced,
and deleting tuples owned by the tuple being deleted. The algorithm is recursively applied.

3.5.2.3. Attribute update algorithm:

Upon receipt of a request to update attribute A of tuple x, which belongs to relation R:
a. If A is neither an attribute through which R references other relations, nor a8 member of
the ruling part of R, perform the update.
b. Update of connection attributes:
b.l. Referencing attributes: If A is an attribute through which R references a relation
R;, check that the new value will reference an existing tuple in Ry. If the new
value references a non-existing tuple in R;, do not complete the update and send
an error message.
b.2. Ruling part attributes: If A is a member of the ruling part of R, initiate deletion of
x using the deletion algorithm. If deletion is completed, insert the updated tuple
x; with the new value for A using the insert algorithm. Otherwise, send an error
message.

19

i3 i R, S ks el 0 ? 5ii-:-<‘emu_u;

B b e

-

4. REPRESENTATION OF DATA MODELS

We now present the guidelines that the structural model presents to a dat model designer,
and discuss how a choice is made between the different representation forms provicd by the struc-
tural model to represent a particular situation. We will see that the same data can be represented
with different relationships, according to the situation, or the view of the data model designer.
Eventually such differences can be accomodated in the integrated database model.

We use the following notation to represent connections in our diagrams:

A
Ownership connection Direct reference Identity reference

4.1. Representation of relationships in the structural model:

One of the advantages of the structural model is that it guides the choice of representation for
a particular situation. This is because the rules attached to each relation and connection type are
explicit, and will lead the data model designer to carefully consider the situation he is modelling.
A model relevant to the real-world situation will be the result, and the situation will be clearly
represented.

In the ensuing discussion, we use the term relationship to denote a relationship between two
real-world entity classes, and the term connection to denote a connection between two relations

in a data model.

Consider the relationship between two entity classes, FATHERS and CHILDREN. This is a
1:N relationship, and may be represented using several different constructs in the structural model
(figure 5):
a. As an association between two entity relations representing fathers and children.
b. As a direct reference, from an entity relation representing children, to a referenced entity
relation representing fathers.

c. As an ownership connection, from an entity relation representing fathers, to a nest entity
relation representing children.

The choice among these alternatives depends upon the situation being modelled.

First, consider the case where the data model represents a community of people. Each person
in the community has an identity of his own, and we want to represent the father-child relationship
between two persons in the community. In this case, the appropriate representation would be as
an association between two persons, the FATHER-CHILD association relation (figure 5a). If either
the father or his offspring move from the community, there is no further need for a father-child
connection between two persons in the community. This is well represented in the data model by
the association, since deletion of a father (or child) tuple causes the deletion of the associating
tuple, but leaves the tuple representing the other person unaffected.

On the other hand, suppose the data model represents data from a school system. In this
case, the father-child relationship is best represented by a reference connection from a CHILDREN
relation to a FATHERS relation (figure 5b). This restricts the deletion of a father tuple as long
as it is being referenced by a child tuple. Again, this is a faithful representation of the situation
since we want to keep information on the father as long as he has a child in the school. Also, every

20

B e i B L L ——

| FATHERS | | CHILDREN | FATHERS

! | CHILDREN }——>| FATHERS | l
[FATHER-CHILD | CHILDREN
(a) Association (b) Reference (c) Nest

Figure 5. Some representations of the FATHER:CHILD relationship

SUPPLIERS

[SUPPLIERS | [PARTS | [PROJECTS |

[PARTS | [PROJECTS |

[SUPPLIERS-PARTS-PROJECTS | 1 1
[PARTS-PROJECTS |
(a) Association (b) Nest and association

Figure 8. Some representations of the SUPPLIERS:PARTS:PROJECTS relationship

child in this school must have some information about his father. (If the father is unknown, an
“unknown father” tuple could be placed within the FATHERS relation.)

Finally, if the data model represents data from a company, and a child is represented in the
data model only because his father works for the company, then the relationship is best represented
as a nest relation CHILDREN owned by the FATHERS relation (figure 5¢). (In this case, FATHERS
could be a subrelation of the EMPLOYEES relation.) Then, children are automatically deleted
from the data model once their father is deleted. Here, when an employee is fired (and the decision
is made to remove his representation from the active employees file), the company is not interested
in any information about his children.

Let is consider a second example, that of an inventory allocation. The situation being rep-
resented is Lthe association between suppliers, parts and projects. If each of the three entity classes
has an independent existence of its own, the appropriate representation is an association among
three entity relations SUPPLIERS, PARTS and PROJECTS (figure 6a).

Alternatively, suppose that we want to associate with each supplier the parts that he supplies,
so that a part does not have an independent existence, but depends on the supplier that supplies the
part. Then, the situation is best represented by two entity relations, SUPPLIERS and PROJECTS,
a nest entity relation PARTS owned by the SUPPLIERS relation, and an association relation
PARTS-PROJECTS between PARTS and PROJECTS (figure 6b). Note that this represents the
full association of SUPPLIER:PART:PROJECT, since by the definition of a nest relation, the
ruling part of the nest relation PARTS includes the ruling part of the SUPPLIERS relation (see
section 3.4.1).

These two examples show how the update rules associated with each relation type are used
for guidance when designing a data model. The update rules force the data model designer to
carefully consider the characteristics of the situation that he is modelling, and thus the data model
becomes a faithful representation of the situation.

21

- o ; T
B/ X W, S v R AR

4.2. Representation of a relationship between two entity classes:

In this section, we consider all possible ways in which the structural model can represent
a relationship between two entity classes. This is important for identifying the constraints on
relationships. It is also important when we discuss data model integration in section 5.

Consider two entity classes, A and B, related in some way. One characteristic of the relation-
ship is its cardinality. The cardinality of the relationship restricts the number of entities of one class
that may be related to an entity of the other class. The cardinality of the relationship between A
and B may be:

(a) 1:1, an entity in A may be related to at most one entity in B, and vice versa.

(b) 1:N, an entity in A may be related to N entities in B, N 2 0, but an entity in B may be
related to at most one entity in A.

(c) M:N, an entity in A may be related to N entities in B, N = 0, and an entity in B may
be related to M entities in A, M > 0.

Cardinalities may be further constrained by specifying M and N as constant numbers. For
example, a 1:1 relationship is a constrained 1:N relationship with N set to 1.

The second characteristic of relationships is the dependency. The dependency specifies whether
an entity of one class can exist independently, or whether it must be related to an existing entity
of the other class. Dependencies can be classified into three types:

(a) A total dependency specifies that entities in both classes must be related to a specified number
of entities of the other class at all times.

(b) A partial dependency specifies that entities from one class, entity class A say, must be related
to a specified number of entities of the other class, B here, but that entities in B can exist
independently.

(c) A no dependency specifies no dependency constraints.

A direct relationship between the two entity classes A and B may be represented in the

structural model as one of five choices (figure 7):

(1) A reference connection: entity class A is represented as a relation Rq, referencing the
relation R, that represents entity class B (figure 7a). The cardinality of the relationship
A:B is N:1, N > 0, and the dependency is partial of A on B (each entity in A must be
related to exactly one entity in B).

(2) An ownership connection: entity class A is represented by a relation Rq that owns a nest
relation Ry representing entity class B (figure 7b). The cardinality of the relationship A:B
is 1:N, N > 0, and the dependency is partial of B on A (each entity in B must be related
to exactly one entity in A). ;

(3) An association relation: relations R, and R, represent entity classes A and B, and an
association relation R,y represents the relationship (figure 7c). The cardinality of the
relationship A:B is M:N, M > 0, N > 0, and there is no dependency.

(4) A nest of references: relations R, and Ry, represent the entity classes A and B. A nest relation
Rgp owned by Rg, and a reference connection from Rgp to Ry represent the relationship
(figure 7d). The cardinality of A:B is M:N, M >0, N 2 0, and there is no dependency.

(5) A primary relation and two reference connections: relations Rq and Ry, represent the entity
classes, and the relationship is represented by a primary relation Rgp and two reference
connections from R,; to Rg and R, (figure 7e). The cardinality of A:B is M:N, M 2 0,
N 2 0, and there is no dependency.

Other relationships may exist indirectly. For example, if entity classes A and B, and entity
classes B and C are directly related, an indirect relationship exists between entity classes A and
C. We will only further consider direct relationships in this report.

22

%l

El-R] | 1
Ral [RaloR) [Rd] [R

(a) Reference (b) Ownership (c) Association (d) Nest of (e) Primary
connection connection relation references relation

Figure 7. Representing two directly related entity classes

Data models that represent the same two related entity classes may use different repre-
sentations for the relationship according to the way they view the update constraints. Two
reasons for choosing different representations can be distinguished: difference in understanding
and difference in representation. We illustrate the differences with an example.

(1) The two data models differ in their understanding of the same real-world situation. Consider
the two entity classes DEPARTMENTS and EMPLOYEES. It is possible that one user
assumes that the relationship between DEPARTMENTS and EMPLOYEES is 1:N (each
employee works in only one department). A second user is aware of exceptions and con-
siders the relationship M:N (an employee may work in more than one department). A
disagreement exists here about the actual situation being modelled, and one of the data
models is in error. It may be that the first user knows only about employees that work
in one department. If such a conflict occurs between the two data models, the real-world
situation being modelled must be re-examined to determine its actual characteristics. We
will not consider this problem further.

(2) The two data models represent the real-world situation differently, each user choosing the
representation which best suits his integrity control requirements. Consider the DEPART-
MENTS and EMPLOYEES example, and suppose the relationship is of cardinality 1:N.
It may be represented in one of the following ways, among others:

(a) a reference connection from EMPLOYEES to DEPARTMENTS (figure 8a), -
(b) an ownership connection from DEPARTMENTS to EMPLOYEES (figures 8b,8c),
(c) an association relation restricted to 1:N (figure 8d),

(d) & nest of references from EMPLOYEES to DEPARTMENTS (figure 8e).

The different representations reflect different integrity requirements:

The reference representation requires each employee represented in the data model to belong
to a department, and restricts deletion of a department from the data model while it is
referenced by some employee.

The ownership connection representation also requires that each employee belongs to a
department, but that deletion of a department tuple from the data model results in the
deletion of all the employee tuples who work in that department.

The association does not place any constraints on the existence of the actual entities rep-
resented, the employee and department tuples. However, an association can exist only
between tuples represented in the data model.

Finally, the nest of references restricts the deletion of a department while referenced by
some employee, but allows employee tuples to exist in the data model that are not related

to any department.

23

S

[EMP-NO [AGE [SAL [DEP-NO |——>|DEP-NO [LOC |

(a)Reference connection

[DEP-NO [LOC |

[DEP-NO | EMP-NO [AGE [SAL |
(Y]

(b)Nest with unique employee identification

| DEP-NO [[LOC |

[DEP-NO | EMP-ID || AGE [SAL |

(c)Nest with non-unique employee identification

[DEP-NO[LOC| [EMP-NO || AGE [SAL |

N

{ DEP-NO | EMP-NO |
(U)

(d)Association

{EMP-NO || AGE | SAL |

[EMP-NO | DEP-NO |——>|DEP-NO [LOC |
L)

(e)Nest of references
Figure 8. Different representations of the DEP:EMP 1:N relationship

Since the association representation can be used to represent M:N relationships, but here the
DEP:EMP relationship is 1:N, the EMP-NOQ attribute must have & unique value for each tuple in
the association relation. This is indicated in figure 8d by marking the attribute with a (U). Note
that this does not violate Boyce-Codd normal form.

~ The nest of references may also represent an M:N relationship, and to restrict it to 1:N, we
also mark the EMP-NO attribute in the connecting nest relation by a (U) (figure 8e). We will use
this convention throughout the examples in section 5.

In the ownership connection representation, we must consider two cases. The identifying
attribute for each EMP tuple in figure 8b is EMP-NO, and has unique values for each employee
independent of his department. Hence, we mark it (U). In figure 8¢, the identifying attributes for
an EMP tuple are the two attributes DEP-NO and EMP-ID, where EMP-ID serves to define the
employee within his department, and hence is unique within a department but is not unique over
all employees.

24

*T—T_.— -

The different views may all be equally valid, and hence more than one set of views, and
corresponding semantics, has to be retained in the integrated database model so that it can serve
in a variety of situations.

We now consider the problem of integrating different data models, defined by independent user
groups and applications, into an integrated database model, to be used as the conceptual schema.
We assume a database system architecture similar to that described by the ANSI/X3/SPARC
report.

25

5. INTEGRATION OF DATA MODELS

We now discuss integration of data models. First we briefly define our terminology for logical
database design.

A DATA MODEL is a representation of the requirements of a particular potential database
user group or application. The definition of data models for individual user groups that expect to
use the database is the first step in the design of an integrated database.

The DATABASE MODEL is the integrated model created by merging the individual data
models. During merging, differences in view are bound to appear. The differences may be resolved
by transformations of the original data models. It is possible that unresolvable conflicts will emerge
among the original data models. Then managemant decisions have to be made to force data model
changes, or to abandon the integration with respect to some data models.

A DATABASE SUBMODEL is the user or application view that is consistent with the integrated
database model. Hence, if no conflicts occurred between a user data model and the integrated
database model, the database submodel for that user will be the same as the data model. If some
conflict had arisen, some differences will exist between the data model and the database submodel.

In section 5.1 we consider some general concepts of data model integration, and in section
5.2 we consider the integration of relations from different data models that represent the same
real-world entity class. In section 5.3 we show how to integrate two different representations of a
relationship between the same two real-world entity classes.

5.1. Concepts of integration:

The data models we integrate will represent real-world situations that partially overlap,
otherwise there will be no need for integration. Hence we expect to discover relations in separate
data models that represent the same entity classes. The first phase of integration is to recognize
such relations. This is not always a simple task, since different data models may use different
names for relations that represent the same entity class.

Recognition of relations that represent the same entity class in different data models is based
on matching ruling parts, since the ruling part defines the correspondence to an entity class. The
relation names and the ruling part attribute names can provide an initial hint to such correspon-
dences. If data exists, similar values within the ruling part attributes can furtherindicate candidates
for entity matching. A match or overlap of the domain definition of ruling part attributes can
establish the necessary equivalence.

Ruling parts may be translated via lexicons, so the search for similar ruling parts must also
consider lexicons of ruling parts in the data models. Since lexicons preserve the identity of ruling
parts, we will not specify throughout that lexicons can be used in the matching of ruling parts.
Some examples of equivalence through lexicons will be given in section 5.2.

We assume in this report that rigorous definitions exist for the domains that the attributes
cover. Definition of domains and attribute encoding can be a major effort, but is outside the scope
of this report. This problem is also addressed by people working on the requirements analysis
phase of database design.

The second phase of integration, following the recognition of relations that represent the
same entity classes, is the recognition of differences in the representations. These differences are
of three types:

(1) Representation of different properties of the same entity class. This is reflected in different
dependent part attributes in the relations that represent the same entity class.

26

(2) Representation of different subsets of entities of the same entity class. This is reflected in
different tuples in the relations that represent the same entity class.

(3) A combination of (1) and (2).

We will cover integration of those cases in section 5.2.

The final phase is to integrate the representation of relationships between two entity classes.
As shown in section 4.2, there are five ways to represent direct relationships in the structural
model. Data models may choose to represent the relationship between the same two entity classes
differently, according to their view of the situation. Hence, the final phase of integration is to
create an integrated database model which will support different representations of relationships
in the data models. We cover this phase in section 5.3.

Many data models may have to be integrated into a single database model. To avoid excessive
complexity we will analyze the integration of only two data models in detail. Successive integration
steps can merge another data model with the database model being built, creating a new database
model. Since both data models and database models use the same primitives, this should not pose
a problem.

We hence have two data models, data model 1 (dml) and data model 2 (dm2). Both data
models will include relations that represent some common entity classes, as well as other classes
of data. We only look at one entity class A in section 5.2, and two entity classes A and B with
a relationship between them in section 5.3. We will denote the relations that represent entity
classes A and B in dml and dm2 by Rg and Re. If both representations are the same, clearly there
is no need for any transformation, and the integrated database model (idbm) will use the same
representation. If representations differ, we create an idbm to support both data models.

The idbm will then support database submodel 1 (dbsml) and database submodel 2 (dbsm2),
corresponding to dml and dm2 respectively. In most cases, dml and dm2 will not be changed, so
dbsml and dbsm2 will be equivalent to dml and dm2. In some cases, where conflicts appear, one
of the data models may have to be changed, and the corresponding database submodel will reflect
those changes. When the database model is established, it may also be desirable for pragmatic
reasons to change a database submodel to acheive a better agreement with the database.

In some cases, only a subset of the tuples in relation Rg (or Rp) in the idbm correspond to
the Rq (or Rp) relation included in dbsml or dbsm2. We then use a subrelation to represent the
subset, and an identity connection will join it to Rs in the idbm. For example, if Rg in dbsml
corresponds to a subrelation of R, in the idbm, we denote this subrelation by Rg) in the idbm, and
Ro1 will have an identity reference to Ra. This subrelation Rq1 of Ra contains only the ruling part
attributes of Rg, so that no duplication of information occurs in the idbm. All other attributes in
Rg can be accessed through the identity reference to Rg.

We do not address the problem of authorization of users to perform insertion and deletion.
We assume that every database submodel has complete insert, delete, and update authorization
over the part of the database model it represents. Hence, if one submodel, dbsml say, inserts
a tuple that does not violate the integrity constraints of dbsm2, the tuple is inserted in both of
them. If the tuple violates the integrity constraints of dbsm?2, it is inserted but remains invisible to
dbem2. For deletion, if deletion of a tuple is legal in dbsml, say, but the tuple may not be deleted
in dbsm2 because of integrity constraints, the tuple will be kept in the idbm and in dbsm2, but
will become invisible to dbsml.

After integration, dbeml and dbsm2 are both supported by the idbm. A mapping will exist
from each submodel to the idbm. This mapping includes additional integrity rules, derived from
the integration process, which will apply to the idbm. These rules are enforced when a database
submodel performs an insertion, deletion, or update. We will list these additional rules with each
case of integration.

' 27

5.2. Integration of different representations of entity classes:

5.2.1. Recognition of relations that represent the same entity class:

This phase of integration requires the recognition of relations included in different data models
that represent the same entity class. Knowledge of the real-world situations being modelled is
helpful to match relations that represent the same entity class but have different names for relations
and ruling part attributes. The domain definitions of ruling part attributes will then verify the
equivalence of such relations by their partial overlap or total match.

Some models may include lexicons of ruling parts for some of the relations in the model.
Examination of such lexicons is necessary when matching ruling parts. For example, dml may
include a relation EMPLOYEES that contains the attributes (EMP-NAME, ADDRESS, HOME-
PHONE, OFFICE, OFFICE-PHONE, DEPT), representing a directory of the employees. Data
model 2, representing job information, includes a relation EMP that contains the attributes
(EMP-NUMBER, AGE, JOB, SALARY, DEPT), and a lexicon relation (EMP-NUMBER, EMP-
NAME) (figure 9a). To recognize that both relationsrepresent the same entity classof EMPLOYEES,
the integrators must consider both the EMP-NUMBER and EMP-NAME attributes from the lex-
icon relation in dm2 when matching the ruling part of the EMP relation to the ruling part of the
EMPLOYEES relation.

5.2.2. Integration of relations that contain different attributes:

We first consider the case where one representation dominates the other. Here, dml includes a
relation R;, and dm2 includes a relation Rj that represents the same entity class as R, and contains
all the attributes represented in R;, plus some additional dependent part attributes. The idbm
will include a relation R that contains the set of attributes represented in R;, and a subrelation
R’ of R that contains the dependent part attributes represented in Rz but not in R;. The tuples
in R correspond to the R; tuples in dbsml, while the subset of tuples in R’ will correspond to the
R, tuples in dbsm2. When dbsm1 inserts a tuple, it is only inserted in R, since it does not contain
the dependent part attributes of R'. The tuple is only visible to dbsml. When dbsm2 inserts a
tuple, it is inserted in both R and R, since it contains the dependent part attributes of both R
and R'. Hence, the tuple is visible to dbsml also.

The general case is that neither relation R; of dml nor relation Rz of dm2 contains the
complete et of attributes, but ecach contains a set of attributes common to both models, and a set
of dependent part attributes unique to its model. In this case, we must create two subrelations. An
example is shown in figure 9. Relation R represents the common attributes, and two subrelations
R; and Rj are used to represent the tuples in dbsml and dbsm2 respectively. When dbsml inserts
an employee tuple, it is inserted in R and R;, but is invisible to dbsm2. When dbsm2 inserts the
tuple with the same ruling part value, the tuple is also inserted in R2, and becomes visible to
dbsm2. A check has to be performed to ensure that common attributes have the same values. Thus,
the base relation R insures the integrity of data values that are common to both data models.

The lexicon relation only references Ry, since it is only represented in dbsm2.

If the two data models use different ruling part attributes, and neither represents the ruling
parj attributes in the other data model (for example, if in figure 1la dm2 did not include the
lexicon), then two solutions exist. The first solution is to change one of the data models to include
th ruling part attributes of the other data model. The second solution, which involves the database
administrator, is to create a lexicon in the idbm in which every new tuple is included before its
insertion by either data model.

We are only dealing with the data model here. When actual databases are to be integrated,
inconsistencies may exist in the data. For example, the same employee may have his department

28

relation R; (EMPLOYEES)
[EMP-NAME || ADDRESS | HOME-PHONE | OFFICE | OFFICE-PHONE | DEP-NO |

DM1 (directory of employees)

relation Ry (EMP) (lexicon)
[EMP-NO [AGE[JOB | SAL | DEP-NO| [EMP-NO [EMP-NAME |

DM2 (job information)
(a)Lexicon of a ruling part that must be considered

relation R subrelation Ry (subset in DBSM2)
EMP-NAME [[DEP-NO | <<<< |EMP-NAME [AGE [JOB[SAL |
A

A
A subrelation R; (subset in DBSM1)
[EMP-NAME [ADDRESS | HOME-PHONE | OFFICE | OFFICE-PHONE |

(lexicon, visible to DBSM2 only)
| EMP-NAME [EMP-NO |

(b)Integrated database model

Figure 9. Integration of different sets of attributes (with lexicon)

listed as 'foundry’ in one data model, and as 'management’ in another. This problem is a post
design issue, although we note that the structural model would not allow this inconsistency if the
different submodels insert their tuples representing the same employee at different times.

We also note that although many subrelations may exist for the same base relation in the
integrated database model, this is only at the model level. At the implementation level, the base
relation and all its subrelations may be placed in the same file, with a conditional field for each
subrelation in each record to indicate whether the record is in the subrelation or not. It may also
be worthwhile to change database submodels by making them aware of a few additional attributes
to simplify the database model.

5.2.3. Integration of relations that represent different sets of tuples:

We know consider the casc where there are differences in the selection of entities to be rep-
resented. For example, if one data model, dml, includes a relation R;, and dm2 includes a relation
Rg that represents & subset of the tuples in R;. The idbm will then include a relation R and a
subrelation Rj of R to represent the tuplesin Ry of dbsm2. The subrelation Ry may be a restriction
subrelation if the subset of tuples in Rj is determined by attribute valuesin R, or a non-restriction
subrelation if the subset of tuples in Rj is determined externally, independent of the model.

For example, dml (for the payroll department) may represent all employees of a company
in an EMPLOYEES relation, while dm2 (for the sales department of the company) includes
the relation SALES FORCE, the employees that work in the sales department. The idbm then
includes a relation EMPLOYEES, and a subrelation SALES FORCE of EMPLOYEES. If the
EMPLOYEES relation contains a DEPARTMENT attribute, the subrelation SALES FORCE is
a restriction subrelation on the DEPARTMENT attribute, restricting the attribute to the value
sales. If EMPLOYEES does not contain 8 DEPARTMENT attribute, SALES FORCE would be
a non-restriction subrelation. In either case, after integration, dbsm2 is only allowed access to
tuples in the SALES FORCE subrelation, but could still access their attribute values from the
base relation EMPLOYEES, while dbsml would be allowed access to all employee tuples.

29

—— —
»

P S|

The general case is that the tuples in the two relations parlially overlap each other. Then dml
incldes relation R; and dm2 includes relation Ry that represent the same entity class, such that
the tuples in the two relations obey the constraints R; n Ry 5# 0, R;—R3 % 6, and R;—R,; £ 0.

Theidbm thenincludes arelation R = R; U Rj, and two subrelationsof R, R; and R3. Again,
R; or Ry could be either restriction or non-restriction subrelations. For example, refering to a
university database, dml (representing the computer science department of the university) includes
a relation CSD PROFESSORS, and dm2 (representing information about permanent faculty) in-
cludes a relation TENURED PROFESSORS. The idbm then includes a relation PROFESSORS,
and two subrelations of PROFESSORS, CSD PROFESSORS and TENURED PROFESSORS.
Each database submodel is allowed access to his subset, and the base relation assures the integrity
of common data represented in both models.

In the last example, it is possible that the relation in each data model contains attributes
common to both relations, and a set of its own attributes. Then, the base relation in the idbm
will contain the common attributes, and each subrelation will contain its own additional set of

attributes.

5.3. Integration of different representations of relationships:

In the following sections (5.3.1 - 5.3.4), we assume that we have two data models, dml and
dm2, and that both data models represent two entity classes A and B, and a relationship between
them. R, and Ry will denote the relations that represent entity classes A and B. If the representation
of the relationship between A and B involves an auxiliary relation (association, primary or nest
relation) we will designate it Rgp.

There are five ways of representing a relationship between two entity classes in the structural
model (section 4.2). Three of these representations are not symmetric with respect to A and B
(reference, nest, nest of references), and two are symmetric (association, primary). If we consider
all possible combinations without looking at symmetries, the set of possible cases for combining
different representations pairwise is 2 X (5 44 4 34 24 1) = 30. We remove 5 cases where
the representation is identical in both data models, and (5 4 4) cases because the association and
primary cases are symmetric with respect to Rg and Rp. Then 16 cases remain to be considered.
We consider all possible combinations with the association representation first (4 cases) in section
5.1.1. We then consider the cases that remain with nest of references (6 cases, section 5.1.2), with
references (4 cases, section 5.1.3), and with nest (2cases, section 5.1.4).

5.3.1. Integration with an association:

In this section, we consider integration of an association with other representations of a
relationship. In those cases, dml represents the relationship A:B as an association relation, and
dm2 will use a different representation. The association may represent a relationship of cardinality
M:N. Our assumption (section 4.2) that both original data models accurately represent the same
situation implies that the cardinality of both representations is the same. Hence, the cardinality
of the relationship is restricted to the represention in dm2.

In order to demonstrate how two different data models may be integrated, we will present
the integration of an association with the nest of references (figure 10a).

In this case, the only difference is that dml can freely delete tuples from Ry, while in dm2
deletion is restricted by referencing tuples from R,,. Hence, we create two subrelations, Ry; and
Rgpi. Those subrelations represent the tuples in Ry (and Ryp) of dbsml. Tuples in Ry and Rgp
in the idbm may include some tuples deleted from dbsml, but not deleted from Ry and Rgp in
the idbm due to the deletion constraint of the reference in dbsm2. These tuples are not visible to
dbsml.

30

dml dm?2 idbm
association nest of references

% l Ral—{F]

t Rl -

Ry

E»F-—E

. >>

Figure 10a. Integration of association and nest of references

The database submodels now obey the following rules. Insertion and deletion in Rq from either
dbsml or dbsm2 is unrestricted, as is deletion of R,y tuples, and unreferenced Ry tuples. If dbsml
deletes a referenced R, tuple (dbsm2 may not perform such a deletion), it is only deleted from
Rp; (and the owned tuples are deleted from Rgpy). These rules accurately reflect the constraints
imposed by the views represented in the original data models.

For brevity, we will use the following format for each integration case. We first list the
differences between the two data models, then list the additional integrity constraints that have to
exist in the mapping from the database submodels to the integrated database model. When listing
these additional constraints, (“relation name”) will mean: do the insertion or deletion specified
on “relation” if allowed by the integrity constraints of the idbm.

We will now present the demonstration case again in brief notation.

(a) ASSOCIATION AND NEST OF REFERENCES(figure 10a):

Differences:
Dml may freely delete tuples from Ry, while in dm2, deletion of Ry tuples is restricted.

Additional constraints:

dbsml:

insert: (l) Ry - Ry, Ry, (2) Rap (Robnnubl)
delete: (1) R, - (Ry), R

dbsm?2:
insert: (1) Rp - Rp,Rp1, (2) Rop - (Rav,(Rab1))

The relation name to the left of the “-" refers to the database submodel, while those to the
right refer to the database model. We only consider cases which need additional control from the
constraints. Insert in Rg of dbsml hence means insert in Rg of the idbm, since it is not listed. In
dbsml, insert in R, requires insertion of the tuple in both R, and Ry; of the idbm. Insert in Rgy
requires insertion in (Rgp,Rqp1) in the idbm, the () brackets meaning if the integrity check of the
idbm will allow it, here if both owner tuples exist. In dbsm2, insert in Rqp requires insertion in
(Raby(Rgb1)), which means: insert the tuple in R,y if the integrity check of the ibdm holds (here
both the owner tuple in Rs and the referenced tuple in Ry exist), then insert the same tuple in
Rgsy (if the other owner tuple exists in Ry;).

Following each integration case, we will give an example with attributes to illustrate the
integration process. Example 1 illustrates the integration of association and nest of references.

31

g o e A R ik AR 3

[DEP-NOJLOC] [EMP-NO [AGE [SAL |

/ DBSM1 (association)
[DEP-NO [EMP-NO |

[EMP-NO [AGE | SAL |

DBSM2 (nest of references)

[EMP-NO [DEP-NO ——>[DEP-NO [LOC |

[EMP-NO | AGE [SAL |

[EMP-NO [DEP-NO —>{ DEP-NO [LOC |

A A
A A
A A IDBM
[EMP-NO | DEP-NO | [DEP-NO |
Example 1
dml " dm2 idbm
association references

a >>>H
g

RF o

Figure 10b. Integration of association and reference

>>>

l

Rgap i—

(b) ASSOCIATION AND REFERENCE(figure 10b):

The cardinality of the relationshi pA:Bisrestricted to N:1, since the reference cannot represent
an M:N relationship.

Differences:
(1) In dm2, every R, tuple must reference an R, tuple, while in dml not all Rg tuples have
to be associated with Ry tuples.

(2) In dm2, deletion of Ry tuples is restricted by references.

Additional constraints:

dbsml:

insert: (1) Ry - Ry,Rp;, (2) Rap - (Raz,Rap)
delete: (1) R, - (Rb)tnbh (2) R - RazRop

32

[DEP-NOJL.OC] [EMP-NO [AGE [SAL |

[DEP-NO [EMP-NO | DBSMI (association)
U

DBSM2 (reference)

[EMP-NO] AGE [SAL | DEP-NO }——>|DEP-NO | LOC |

[EMP-NO [AGE [SAL |

A
A
[EMP-NO [DEP-NO }—>{ DEP-NO [LOC |
A
A
[EMP-NO [DEP-NO | { DEP-NO | IDBM
(Y
Example 2
dml dm2 idbm
association nest

| =
Rob (Rsz

Figure 10c. Integration of association and nest

+ " [Ra] [Rs]

dbsm2:
insert: (1) Ra - (Ro,Ro3,(Rab)), (2) Ro - Ro,Rpy

The requirement that every R, tuple must reference an R, tuple in dm2 leads to the creation
of the subrelation Ry, while the unrestricted deletion of Rp tuples in dml leads to the creation
of Ry; (example 2).

(c) ASSOCIATION AND NEST(figure 10c):

The cardinality of the relhtionchip A:B is restricted to 1:N, since the ownership connection
can only represent 1:N relationships.

Differences:

(1) In dm2, existence of a tuple in Ry, requires the existence of the owner tuple in Rq, while
in dml, R, tuples can exist independently.

(2) In dm2, deletion of a tuple from Rg requires the deletion of the owned tuples in Ry, while
dml does not require these deletions.

Additional constraints:
dbsm2:
insert: Ry - (Ry,Ry3)

33

-

S

————— N

-

R R e VP = LS P
g’ s e
s s . .

[DEP-NOJLOC| [EMP-NO [AGE [SAL |

[DEP-NO [EMP-NO | DBSM1 (association)
L)

[DEP-NO[[LOC |

[DEP-NO [EMP-NO [AGE [SAL | DBSM2 (nest with unique identification)
)

[DEP-NOJLOC| [EMP-NO |[AGE [SAL |

N i)

| DEP-NO | EMP-NO | IDBM
(U)
Example 3
dml dm2 idbm
association primary

+ (R] = [BleARal—>{Rs]
A A A

A A A
(Ro| [Rs] [Roy][Roty J#—{Re1 |
Figure 10d. Integration of association and primary

The Ry tuples of dbsm2 are only those in Ryg in the idbm, since they require the existence
of the owner tuple. In the idbm, Rgp will also represent the subset of Ry tuples in Ryg.

Here, we must consider two examples, since the nest relation may represent different tuple
identification attributes than the association. First, we consider the case where the identification
is the same. In example 3, EMP-NO identifies the employee in both dbsml and dbsm2. Since
the cardinality of DEPARTMENT:EMPLOYEE is 1:N, the EMP-NO attribute must have unique
values in tuples of the relations marked (U). Note that this does not violate Boyce-Codd normal
form. In this case, the integration is straightforward.

In example 4, the identifying information is different. Dbsm2 uses the two attributes (
EMP-NO, CHILD-NAME) as ruling part, while dbsml uses only CHILD-ID. CHILD-ID uniquely
identifies every child tuple, but CHILD-NAME does not. Here, if dbsm2 does not represent the
attribute CHILD-ID, he has to be made aware of it to maintain the correct mapping between
CHILD-ID and CHILD-NAME on insertion of child tuples.

(d) ASSOCIATION AND PRIMARY(figure 10d):

The cardinality of the relationship A:B is M:N.

Differences:
In dm2, deletion of R, and R, is restricted by references

34

|EMP-NO | AGE | SAL | [CHILD-ID | AGE [GRADE | CHILD-NAME |

\

{ EMP-NO | CHILD-ID | DBSM1 (association)
(Y]

[EMP-NO [| AGE [SAL |

DBSM2 (nest with non-unique identification)

[EMP-NO | CHILD-NAME | AGE | GRADE |

[EMP-NO [AGE[SAL| [CHILD-ID | AGE|GRADE | CHILD-NAME |

[EMP-NO | CHILD-ID | IDBM
(Y]

Example 4

Additional constraints:

dbsml:

insert: (1) Rq - Rq, Rqy, (2) Ry - Ry, Ry, (3) Rap - Rap, Rapn
delete: (1) Ra - (Ra), Ro1, (2) Re - (Rs), Rex

dbsm2:

insert: (1) Ra - Ra, Ra1, (2) Ry - Ry, Rey, (3) Rab - Rab, Rabi

5.3.2. Integration with a nest of references:

Now we consider the cases that remain with nest of references. Dml represents the relation-
ship A:B as a nest of references, and dm2 represent it differently. The cardinality of the nest of
reference representation is M:N, but may again be restricted by the representation in dm2. The
nest of reference representation is not symmetric with respect to entity classes A and B, and so
we must consider it twice with each non-symmetric representation.

(a) NEST OF REFERENCES AND NEST OF REFERENCES(figure 11a):

Differences:
(1) Deletion of Ry (R,) is restricted in dml (dm2).
(2) Deletion of Rg (Rp) in dml (dm2) requires deletion of owned tuples in Rgp (Roa)-

Additional constraints:

dbsml:

insert: (1) Rﬂ Lt Ronnah (2) Rb = Rb) Rb?v (3) Rnb e (Rab.R-u.(Ruz))
delete: (1) Rq - (Ra),Ra1,(Rap), (2) Ry - (Ry,Rap).

dbem?2:
in:ert: (1) Rg - Ra,Rqy, (2) Ry - Ry, Reg, (3) Rpa = (RabyRoaa,(Rab1))-
delete: (1) R, - (Ra,Rap), (2) Ry - (Re), Roa,(Rap)-

35

O Y R e ARSI s

[g “‘Wmlm TN g .

dml dm2 idbm
nest of references nest of references

Figure 1la. Integration of nest of references and nest of references

[EMP-NO [AGE[SAL |

DBSM1 (nest of references)

| EMP-NO | DEP-NO }——>[DEP-NO [LOC]

| DEP-NO [LOC]|

DBSM2 (nest of references)

[DEP-NO | EMP-NO |——>[EMP-NO [AGE [SAL]

[EMP-NO [AGE [SAL | DEP-NO [LOC |
a0 A
A A

EMP-NO |

l / J IDBM

[EMP-NO [DEP-NO | >> [EMP-NO [DEP-NO | << [EMP-NO | DEP-NO |

Example 5

When dbsml tries to delete an R, tuple in the idbm that is referenced from Rpgg, it is only

deleted from Rgj. If the tuple is not referenced from Rysz, the tuples in Rqp that correspond to
those deleted from Rgp; (due to the deletion of R,) should also be deleted, since they no longer
exist in either Rgp; or Rgpa. Ry exists to ensure that the tuples associating tuples from Rq with
tuple from R, are consistent.

Example 5 illustrates this case.

(b) NEST OF REFERENCES AND REFERENCE(figure 11b, lic):

Both nest of references and reference are non-symmetric, 50 we must examine two cases.

Case 1 (figure 11b):

The cardinality of the relationship A:Bisrestricted to N:1, since the reference cannot represent

an N:M relationship.

36

dml dm2 idbm

nest of references reference
+ -
| A
[Reb (Rea) }—>{Rs]

Figure 11b. Integration of nest of references and reference (Case 1)

| EMP-NO | AGE | SAL |

l

[EMP-NO [DEP-NO [——>|DEP-NO [LOC| DBSMI (nest of references)
U

DBSM2 (reference)

[EMP-NO [AGE | SAL | DEP-NO }——>[DEP-NO [LOC]

[EMP-NO [AGE [SAL |

A

[EMP-NO | DEP-NO [—>{ DEP-NO [LOC| IDBM

(U)
Example 6
dml’ dm2 idbm
nest of references reference
, EE A
A
] A

(Rab | >> [Rap | << |Rpag |
Figure 11c. Integration of nest of references and reference (Case 2)

Differences:
A tuple in Ry in dm2 must be associated with an Ry tuple.

Additional constraints:
dbsm2:
insert: Ry - (Rg,Rq2)

Case 2 (figure llc):
Again, the cardinality of the relationship A:B is restricted to 1:N.

37

R R T

LAINF WW;".»~%

[DEP-NO [LOC]

{ DEP-NO | EMP-NO ——>[EMP-NO [AGE [SAL| DBSMI1 (nest of references)
)

DBSM2 (reference)

[EMP-NO [AGE [SAL [DEP-NO }——>[DEP-NO J[LOC]

[DEP-NO [LOC] [EMP-NO [AGE [SAL]
A A
A A
A
A
1 A

[DEP-NO |EMP-NO | >> [DEP-NO [EMP-NO] << [EMP-NO [DEP-NO| IDBM

(U) (U)
Example 7
dml dm2 idbm
nest of references nest
o =
l | T

[Ra]RE

Figure 11d. Integration of nest of references and nest (Case 1)

Differences:
(1) Deletion of Ry (Ro) tuples is restricted in dml (dm2).
(2) Every Ry tuple in dm2 must be related to an Rg tuple.

Additional constraints:

dbsml:

insert: (1) Rq - Rg,Rq, (2) Rop - (Rapi, Rop Ryg)

delete: (1) Rs - (Ra),Ra1,(Rab), (2) Rs - (Rs,Rap), (3) Rab - Rasi, (Rab).

dbsm2: :
insert: (1) Rq - Ro,Ra1, (2) Ry - (Rs, Ro2,Rab,Rab1).
delete: (1) R, - (Rg,Rap), (2) Ry - (Ry, Rgp),Rb3.

Example 7 illustrates this case.

(c) NEST OF REFERENCES AND NEST(figure 11d, 11le):

Again, both nest of references and nest are non-symmetric, so we must examine two cases.
Case 1 (figure 11d):

The cardinality of the relationship A:Bisrestricted to L:N, since the reference cannot represent
an N:M relationship.

38

—

[DEP-NO [LOC |

[DEP-NO [EMP-NO |——>|EMP-NO [AGE [SAL | DBSMI (nest of references)
)

[DEP-NO [LOC |

[DEP-NO | EMP-NO [AGE | SAL| DBSM2 (nest)
()

[EMP-NO [AGE [SAL | [DEP-NO [[LOC |

A
A

[EMP-NO [DEP-NO | >> [EMP-NO | DEP-NO | IDBM
(U)

Example 8

Differences:
(1) R, tuples may exist independently in dml.
(2) Deletion of Ry tuples is restricted in dml.

Additional constraints:
dbsml:

insert: Rgp - (Rap,Ro2)-
dbem2:

insert: Ry - (Rp,Rap,Rp2)-
delete: Ry - (Rp),Roa.

We again consider two examples, because of the different ways the nest relation may repre-
sent the tuple identifying information. In example 8, we consider the case where the identifying
information is the same.

In example 9, we now consider the case where the identifying information is different. Here,
we must slightly change dm2 by introducing an additional attribute.
Case 2 (figure lle): :

The cardinality of the relationship A:B is restricted to N:1.

Differences:
(1) In dm1l, R, tuples can exist independently, while in dm2 an owner tuple R, tuple must
exist.

(2) In dml, deletion of R, tuples is restricted by references, while in dml, deletion of an Ry |
tuple requires deletion of related Rg tuples.

39

i

[DEP-NO [[LOC |

[DEP-NO [EMP-NO ——>{EMP-NO || AGE [SAL | DBSMI (nest of references)
)

r
/
L
:
L [DEP-NO [LOC |

DBSM2 (nest)

[DEP-NO | EMP-ID [AGE [SAL| [EMP-NO |

‘ [EMP-NO [AGE [SAL | [DEP-NO [[LOC |

| A

1 A

{EMP-NO | DEP-NO [EMP-ID | >> [EMP-NO [DEP-NO | IDBM
(V)
‘ Example 9
' dml dm?2 idbm
nest of references nest

l l

Ral—F] 7 o

:'—H

E >>>
E >>>

Figure 1le. Integration of nest of references and nest (Case 2)

Additional constraints:
dbsml:

insert: (1) Ry - Ry, Ry, (2) Ry - (Rubr (RuQ»'
dbem?2: ;

insert: (1) Ro - (Ra,Rq2,Ras), (2) Ry - Ry, Ryz.
delete R, - (Rp),Rpa.

We will only consider one example for this case, example 10, with different identification.

(d) NEST OF REFERENCES AND PRIMARY(figure 11f):

The cardinality of the relationship A:B is M:N.
Differences:
In dm2, deletion of R, is restricted by references

40

i‘?_} - o

X

WY

ap;fzg‘*@:r-.;-@iﬂmqw .5

[EMP-NO [AGE [SAL |

[EMP-NO [DEP-NO |——>|DEP-NO [LOC| DBSMI (nest of references)
U)

[DEP-NO [LOC |

DBSM2 (nest)

[DEP-NO[EMP-ID [AGE[SAL| [EMP-NO |

[EMP-NO || AGE [SAL |

[EMP-NO [DEP-NO ——>[DEP-NO [LOC |

A(U) A
A A
A A IDBM
[EMP-NO [DEP-NO | EMP-ID |%#— DEP-NO |
Example 10
dml dm? idbm
nest of references primary
+ [Ray] = [(Ra]¢—{Ra[—>{Rs|
| e
A A

[Ras }—{Rs] (Bo| (Ry]

Figure 11f. Integration of nest of references and primary

Additional constraints:

insert: (1) Rq - Ro, Ray, (2) Rop - Rapy Ravn
delete: (1) Rq - (Rs), Ray*

insert: (1) Rg - Rq, Rqj, (2) Rap - Rap, Rab1

5.3.3. Integration with a reference:

Dml represents the relationship A:B as a reference connection from Rg to Ry, and dm2
represents it using a different structure. The cardinality of the relationship A:B is N:1, possibly
restricted by the dm2 representation.

(a) REFERENCE AND REFERENCE(figure 12a):

The cardinality of A:B is restricted to 1:1, since in dml it is N:1, and in dm2 it is 1:N. It
would be unusual to encounter these two representations of the same a 1:1 relationship. However,
it can be integrated.

41

dml dm2 idbm

reference reference
+ - 5
BRSNS 4

[Rab1 | >> [Rab| << [Rpaz]

Figure 12a. Integration of reference and reference

| DEP-NO [[LOC[MANAGER-NO ——>/MANAGER-NO JAGE [SAL | DBSMI (reference)

()
| MANAGER-NO [AGE [SAL [DEP-NO }|——>[DEP-NO [LOC| DBSM2 (reference)
()
[DEP-NO[[LOC] MANAGER-NO [AGE [SAL |
A A
A A
[DEP-NO | MANAGER-NO |>>>[DEP-NO [MANAGER-NO | << [MANAGER-NO [DEP-NO | IDBM
() (U) Y (V)
Example 11
dml dm?2 idbm
reference nest
+ -
A
| A A
[Rua]

Figure 12b. Integration reference and nest (Case 1)

Differences: :
(1) In dml (dm2), every R, (R) tuple must reference an Ry (Rg) tuple.
(2) Deletion of Ry (R,) tuples is restricted in dml (dm2).

Additional constraints:
dbsml:

insert: Rg - (Rg,Ra1,RopRp2).
delete: Rq - (Ra),Ra1,(Rab)-
dbsm2:

insert: Ry - (Ry,Rp3,Rap,Re).
delete: Ry - (Ry),Rpz,(Ros)-

(b) REFERENCE AND NEST(figure 12b,12¢):

| Case 1 (figure 12b):
: The cardinality of the relationship A:B is N:1.

42

e

s o e e

A RN TN s NI, 0 B SNSRI AL RN KT

DBSMI (reference)

[EMP-NO J AGE [SAL [DEP-NO }—>[DEP-NO [LOC |

[DEP-NO [LOC |

[DEP-NO [EMP-NO [AGE [SAL | DBSM2 (nest)
(v)

[EMP-NO [AGE [SAL | DEP-NO ——>[DEP-NO [LOC |
A

A
A A
[EMP-NO [DEP-NO |%—————{DEP-NO | IDBM
(Y]
Example 12
dml dm2 idbm
reference nest

+ i
1
[Rez 1% [Rua)

Figure 12¢c. Integration of reference and nest (Case 2)

>>>
>>>

Differences:
(1) In dbsm1, deletion of Ry tuples is restricted by referencing.
(2) In dbsm2, deletion of an R, tuple requires deletion of related tuples in Rq.

Additional constraints:
dbsml:
insert: (1) R, - (Ro,(Rq3)), Ry - Ry, Ry,

dbsm?2:
insert: Ro - (Ro,Ro2), Ry - Ry, Rpa.
delete: R; - (Rp),Rpa.

Example 12 illustrates this case by a 1:N relationship between DEPARTMENTS:EMPLOYEES.
Case 2 (figure 12¢):

The cardinality of the relationship A:B is restricted to 1:1, since in dml it is N:1, and in
dm?2 it is I:N.
Differences:

(1) Every Rg tuple in dml must reference an Ry tuple, while in dm2 every Ry tuple must be
owned by an R, tuple.

(2) Deletion of Ry tuples is restricted in dml.
(3) Deletion of an Rg tuple in dm2 requires deletion of owned Ry tuples.

43

‘.

.

EEENPESIREENY- wESS—

[DEP-NO [LOC | MANAGER-NO ——>| MANAGER-NO | AGE |SAL | DBSM1 (reference)
()

[DEP-NO [LOC |

[DEP-NO [MANAGER-NO [AGE |SAL | DBSM2 (nest)

(V))
[DEP-NO [LOC | ———>{ MANAGER-NO [AGE [SAL |
A A
A A
[DEP-NO | MANAGER-NO | %~ MANAGER-NO | IDBM
9]
Example 13
dml dm?2 idbm
reference primary
+ = [Re]<—{Ra[—>R:]
s A) A
(A A

Figure 12d. Integration of reference and primary

Additional constraints:
dbsml:

insert: Rq - (Ro.Rol.;Rbl)
dbsm2:

insert: Ry - (Rp,Ra1,Rp3)
delete: Ry - (Ry),Ryz

Example 13 illustrates this case.

(c) REFERENCE AND PRIMARY(figure 12d):

The cardinality of the relationship A:B is N:1.

Differences:
In dm2, deletion of Rq is restricted by references

Additional constraints:

dbsml:

insert: Rp - Ry, (Rp1 ¢

delete: (1) Ry - (Ry1, (Rp))

dbsm2:

insert: (1) Ry - Ry, Rey, (2) Res - Rap, Rei

44

dml dm?2 idbm

nest nest

+ -
| j 3
A A
Ra2, (R {

Figure 13a. Integration of nest and nest

[DEP-NO [[LOC |

[DEP-NO [MANAGER-NO | AGE | SAL | DBSM1 (reference) A
) u)

(MANAGER-NO [AGE | SAL |

|

{MANAGER-NO | DEP-NO [LOC| DBSM2 (nest)

(9] (U)
[DEP-NO [[LOC | [MANAGER-NO [AGE | SAL |
A A
A A
| DEP-NO | MANAGER-NO | IDBM
(D) (9]
Example 14]

5.3.4. Integration with a nest:

(a) NEST AND NEST(figure 13a):

The cardinality of A:B is restricted to 1:1.

Differences:
(1) In dm1 (dm2), every R, (Rg) tuple must be owned by an R, (Ry) tuple.
(2) Deletion of an Rq (R;) tuple in dml (dm2) requires deletion of the owned Ry (Rg) tuple.

Additional constraints: 1
dbsml:

insert: Ry - (Rs,Re1)

dbsm2:
insert: Rq - (Ro,Rq3)

Example 14 illustrates this case.

45

e

dml dm2 idbm

nest primary
+ - &Ak—f&d—ﬂﬂ%
A

A
| A A
][R

Figure 13b. Integration of nest and primary

(b) NEST AND PRIMARY(figure 13b):

The cardinality of the relationship A:B is 1:N.
Differences: :
(1) In dm2, deletion of Rg is restricted by references

(2) In dm2, deletion of an R, tuple results in deletion of owned Ry, tuples, while in dm2 deletion
of Ry is restricted by references

Additional constraints:

dbsml:

insert: (1) Rg - Rg, Rqy, (2) Ry - (Rp, Reg)
delete: (1) Ry - Ry, (Ry)

dbsm2:

insert: (1) Rg - Rg, Rqy, (2) Rap - Rap, Ry

46

6. RELATIONSHIP TO OTHER MODELS

In this section, we examine some of the similarities between the structural model and other
data models.

8.1. The relational model:

In relational model theory, the concepts of functional [Codd72] and multivalued [Fagin77]
dependency among attributes are important for normalization of relations and data model design.
A functional dependency between two attributes A; and Az, denoted by A; = A3, means that for
each value of DOM(A;), a unique corresponding value of DOM(A3) can be determined. Functional
dependency between two sets of attributes is defined correspondingly. Attributes of a relation R
in Boyce-Codd normal form obey the constraint: if any attribute A in R is functionally dependent
on a set of attributes X in R, and A is not in the set X, then all attributes in R are functionally
dependent on X.

Alirelationsin the structural model are in Boyce-Codd normal form, and hence obey the above
constraint. A functional dependency will also exist between each attribute in a referenced relation,
and the ruling part of the referencing relation. Hence, a reference connection from a relation R
to another relation R'[A;,...A;] defines i functional dependencies K(R) = Aj;;5 = 1,...i. This
is so because a functional dependency K(R) = X, will exist in relation R, where X, is the set
of referencing attributes in R. We will also have the functional dependencies X, = K(R') and
K(R') = Aj;j = 1,...i. From the transitivity rule for functional dependencies, it follows that
KR)= Ajii=1,...4.

Since the structural model is constructed from relations, a relational query system based on
the relational algebra or the relational calculus can be used on the structural model. However,
additional capabilities exist in the structural representation to simplify expression of queries by
making use of represented connections. For example, consider the structural schema in figure
8a. A query such as “FIND THE WORK LOCATION OF EMPLOYEE NUMBER 5" does not
have to be expressed as a join between two relations, since the reference connection specifies the
department tuple that corresponds to the tuple representing employee number 5.

In the relational model, one has to specify integrity constraints to maintain tuples in different
relations in a consistent state. In the structural models, such constraints may be specified implicitly
via connections.

8.2. The hierarchical model:

A hierarchical model can. be expressed using relations as record types and ownership con-
nections as hierarchical arcs. Hence, if a structural model is restricted such that only ownership
connections are used, and such that all relations are connected together in a tree structure, a
hierarchical definition tree would result. The difference in representation is the redundancy created
by repetition of the ruling part attribute of the owner relations in the owned relations. However,
such redundancy need not be implemented in a hierarchical implementation.

8.3. The network model:

The link set concept of the network model can be represented in the structural model. An
automatic set can be defined using an ownership connection. Again, the only difference is the
redundant representation of the ruling part attributes from the owner relation in the owned relation.

47

——————

-~

However, the existence of the connecting attributes implicilly specifies the set occurence when
a new member tuple is inserted in the data model without requiring an additional procedure to
specify the correct owner.

A manual set can be represented by a 1:N association between two relations, as in the ex-
ample of figure 8d. Here, the DEPARTMENTS relation corresponds to the owner type, and the
EMPLOYEES relation to the member type. Einployee tuples can exist without belonging to any
department tuple, and the set of members of each department owner tuple is specified via the
association.

The implementation oriented features of the hierarchical and network models are implemen-
tation dependent, and hence are best left to the implementation phase. We note that the structural
model may represent structures that are not part of any of the three other models, as shown in

section 4.2.

48

'.‘-‘:’j—-

7. THE DATABASE DESIGN PROCESS

This section summarizes the process of designing the database with the aid of the structural
model, and provides a brief discussion of considerations for model implementation. The approach,
which we only outline here, provides much of the motivation for concepts presented in the structural
model. A detailed description and analysis of the remaining steps of the database design process
will be the subject of a later report.

An overview of the entire design process for an integrated database system is given in figure
14. We define three groups of people that partake in the design process: the potential users, the
integrators, and the implementors. These groups will interact during the database design process.
The vertical axis in figure 14 defines the activities of each group relative to a time frame.

A potential user is a group of people or application programs that expect to use the database
system. Many such potential users will exist since we are designing a large, integrated database.
Each potential user must analyse his requirements, and define a data model with expected load
estimates. Since a database typically serves many diverse but potentially related interests, many
such data models can be established.

Insection 4.1, we showed how the structural model guides the design of data models. Additional
information is solicited from the potential user about his expected use of his data model. This
information is not part of the data model, but is attached to the relations and connections of
his data model. This includes additional integrity constraints, and expected retrieval and update
characteristics for the data model. Load estimates will be classified into several update and retrieval
components on the relations and connections of the data model.

The database integrators then undertake to combine these data models into an integrated
database model. In the process of combining the data models, conflicts may arise which have to
be resolved by changing some of the data models. There may be data models which turn out to
be unrelated, or weakly related, to the core of the integrated database model so that they are not
included. The result of the data model integration is to define preliminary database submodels for
the user groups. This process will need consultation with the users if their data model has to be
changed.

The integrators then combine the load estimates from the individual user data models and
produce load estimates for the database model. When the transformation from data models to
database model is simple, the load estimates can simply be added together. In complex situations,
load data will have to be transformed to correspond to the transformation from the data models
to the database model.

The implemetors then use the cummulative load estimates on relations and connections to
design the file structures and access methods. They take into account the expected update and
retrieval loads for the database model. Connections that are expected to be used frequently should
be explicitly represented in the implementation. A methodology for designing the file structures
and access methods based on the expected update and retrieval characteristics of relations and
connections will be described in a later report.

When usage patterns change, it is reasonable to change implemented file structures and access
methods without affecting the structural database model. Only the performance of retrieval and
updates along model relations and connections whose implementation is changed will be affected.
Provisions should be made in the implementation for such a restructuring.

Provisions must also be made for changing user data models, or for deletion of existing
submodels and addition of new data models. This may cause a change in the database model.
Structural model changes which only affect rarely used connections will be easier to accomodate
than changes which affect very critical and tightly bound connections.

49

P MR T R i &bt S ORI R E LS e

USERS INTEGRATORS IMPLEMENTORS
Requirements analysis
Data models construction Dista models ikegration
T Load estimates on data into databass model
1| models Load integrati ¢
m d:;b;::zm d“;n onto Alternative file selections
¢ | Database submodels de- e analysis
fined on database model !
Alternative performance Pile disian decdaiin
estimates ¢
Performance prediction
| 4

Figure 14. The integrated database design process

We will address the issue of database design and implementation using the structural model
in a separate report. We will give a quantitative approach to database design, and discuss possible
implementation choices for the structural model constructs.

50 R

8. Conclusions:

The model we have presented provides a bridge between the simplicity of the relational model
and the explicitness of the network model. On the one hand, all structuresin the model are relations
in Boyce-Codd normal form so that the uniformity of the relational model is maintained. Query
techniques devised for relational models can be easily incorporated into the structural model. On
the other hand, important structural information about the real-world situation is incorporated
in the data model, and provides important knowledge both for potential users and for database
system implementors.

We then showed how the different representations in two data models can be integrated,
leading to the construction of an integrated database model which correctly supports the different
data models of the users. The integrated database model then supports tiie user submodels.

Our point of view of the implementation process is that connections between relations have
to be carefully considered. Binding of important connections will cause reasonable levels of per-
formance to be achieved. At the same time, unbound connections remain recognized, and may be
employed when restructuring due to changing demands becomes necessary. The decision of which
connections to bind is best supported by inclusion of connections which are candidates for binding
in the database model.

51

References:

[Abrial74] Abrial, J.R., “Data Semantics”, in J.W.Klimbie and K.L.Koffeman (eds.), “Data
Base Management” (Proc. IFIP Conf. on Data Base Management), North-Holland, 1974,
pp-1-60

[Chang?8) Chang, S.-K. and W.-H.Cheng, “Database Skeleton and its Application to Logical
Database Synthesis”, IEEE Trans. on Software Engineering, Vol.SE-4, No.l, January
1978, pp.18-30

[Chen76] Chen, P.P.S., “The Entity-Relationship Model - Towards a Unified View of Data”,
ACM Trans. on Database Systems, Vol.l, No.1, March 1976, pp.9-36

[Codd70] Codd, E.F., “A Relational Model for Large Shared Data Banks”", Comm. ACM,
Vol.13, No.8, June 1970, pp.377-387

[Codd72) Codd, E.F., “Further Normalization of the Data Base Relational Model”, in R.Rustin
(ed.), “Data Base Systems”, Courant Comp. Sci. Symp., Volume 6, Prentice-Hall, 1972,
pp.33-64

[CODASYL74) CODASYL Data Description Language, Journal of Development (June 1973),
National Bureau of Standards Handbook 113, Gov. Printing Office, Wash.D.C.,Jan. 1974,
155 pp.

[DeBlasis77) DeBlasis, J.P. and T.H.Johnson, “Data Base Administration - Classical Pattern,
Some Experiences and Trends”, Proc. NCC, 1977, AFIPS Vol.46, pp.1-7

[Eswaran75) Eswaran, K.P. and D.D.Chamberlin, “Functional Specifications of a Subsystem
for Database Integrity”, in D.S.Kerr (ed.), “Very Large Data Bases”, (Proc. Intl. Conf.
on VLDB), ACM, 1975

[Fagin77) Fagin, Ronald, “Multivalued Dependencies and a New Normal Form for Relational
Databases”, ACM Trans. on Database Systems, Vol.2, No.3, Sept. 1977, pp.262-278

[Fry76] Fry, J.P.and E.H.Sibley, “Evolution of Data-Base Management Systems”, ACM Comp.
Surveys, Vol.8, No.1, March 1978, pp.7-42

[Hammer78] Hammer, M. and D.McLeod, “The Semantic Data Model: A Modelling Mechanism
for Data Base Applications”, in E.Lowenthal and N.B.Dale (eds.), ACM SIGMOD Intl.
Conf. on Management of Data, Austin, Texas, 1978, pp.26-36

[Kent77]) Kent, W., “New Criteria for the Conceptual Model”, in P.C.Lockemann and E.J.Neuhold
(eds.), “Systems for Large Data Bases” (Proc. 2nd Intl. Conf. on VLDB), North-Holland,
1977, pp.1-12

[Manacher?5) Manacher, S., “On the Feasibility of Implementing a Large Relational Data Base
with Optimal Performance on a Mini-Computer”, in D.S.Kerr (ed.), “Very Large Data
Bases” (Proc. Intl. Conf. on VLDB), ACM, 1975, pp.175-201

[Mylopoulos75) Mylopoulos, J. and N.Roussopoulos, “Using Semantic Networks for Data Base
Management”, in D.S.Kerr (ed.), “Very Large Data Bases”, (Proc. Intl. Conf. on VLDB),
ACM, 1975, pp.

[Navathe78] Navathe, S.B. and M.Schkolnick, “View Representation in Logical Database
Design", in E.Lowenthal and N.B.Dale (eds.), ACM SIGMOD Intl. Conf. on Management
of Data, Austin, Texas, 1978, pp.144-156

[Schmid75) Schmid, H.A. and J.R.Swenson, “On the semantics of the relational model”, in
W.F.King (ed.), ACM SIGMOD Intl. Conf. on Management of Data, San Jose, California,
1975, pp.211-223

[Sibley76] Sibley, E.H., “The Development of Database Technology”, ACM Computing Surveys,
Vol.8, No.1, March 1978, pp.1-7

52

[Smith77) Smith, J.M.and D.C.P.Smith, “Database Abstractions: Aggregation and Generalization”,
ACM Trans. on Database Systems, Vol.2, No.2, June 1977, pp.105-133

[Steel75) Steel, T.B.,Jr., “ANSI/X3/SPAL.C Study Group on Data Base Management Systems
Interim Report”, FDT (pub. ACM SIGMOD), Vol.7, No.2, 1975

[Stonebraker74) Stonebraker, M., “High level integrity assurance in relational data base manage-
ment systems”, Electronic Research Lab. report ERL-M473, University of California,
Berkeley, California, May 1974

[Taylor76]) Taylor, R.W.and R.L.Frank, “CODASYL Data-Base Management Systems”, ACM
Computing Surveys, Vol.8, No.1, March 1976, pp.67-104

[Tsichritzis76) Tsichritzis, D.C. and F.H.Lochovsky, “Hierarchical Data-Base Management”,
ACM Comp. Surveys, Vol.§, No.1, March 1976, pp.105-124

[Tsichritzis?7] Tsichritzis, D. and F.Lochovsky, “Views on Data”, in D.Jardine (ed.), “The
ANSI/SPARC DBMS Model", North-Holland, 1977, pp.51-85

[Wiederhold77] Wiederhold, G., “Database Design”, McGraw-Hill, 1977, Chapter 7, pp.329-
367

[Wiederhold78) Wiederhold, G., “Management of Semantic Information for Databases”, Proc.
3rd USA-Japan Comp. Conf., AFIPS & IPSJ, San Fransisco, California, 1978, pp.192-197

53

&N .
.

e

